Survey of certain valuations of graphs

Martin Bača; J.A. MacDougall; Mirka Miller; Slamin; W.D. Wallis

Discussiones Mathematicae Graph Theory (2000)

  • Volume: 20, Issue: 2, page 219-229
  • ISSN: 2083-5892

Abstract

top
The study of valuations of graphs is a relatively young part of graph theory. In this article we survey what is known about certain graph valuations, that is, labeling methods: antimagic labelings, edge-magic total labelings and vertex-magic total labelings.

How to cite

top

Martin Bača, et al. "Survey of certain valuations of graphs." Discussiones Mathematicae Graph Theory 20.2 (2000): 219-229. <http://eudml.org/doc/270186>.

@article{MartinBača2000,
abstract = {The study of valuations of graphs is a relatively young part of graph theory. In this article we survey what is known about certain graph valuations, that is, labeling methods: antimagic labelings, edge-magic total labelings and vertex-magic total labelings.},
author = {Martin Bača, J.A. MacDougall, Mirka Miller, Slamin, W.D. Wallis},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {(a,d)-antimagic labeling; (a,d)-face antimagic labeling; edge-magic total labeling; vertex-magic total labeling; antimagic labeling},
language = {eng},
number = {2},
pages = {219-229},
title = {Survey of certain valuations of graphs},
url = {http://eudml.org/doc/270186},
volume = {20},
year = {2000},
}

TY - JOUR
AU - Martin Bača
AU - J.A. MacDougall
AU - Mirka Miller
AU - Slamin
AU - W.D. Wallis
TI - Survey of certain valuations of graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2000
VL - 20
IS - 2
SP - 219
EP - 229
AB - The study of valuations of graphs is a relatively young part of graph theory. In this article we survey what is known about certain graph valuations, that is, labeling methods: antimagic labelings, edge-magic total labelings and vertex-magic total labelings.
LA - eng
KW - (a,d)-antimagic labeling; (a,d)-face antimagic labeling; edge-magic total labeling; vertex-magic total labeling; antimagic labeling
UR - http://eudml.org/doc/270186
ER -

References

top
  1. [1] M. Bača and I. Holländer, On (a,d)-antimagic prisms, Ars Combinatoria 48 (1998) 297-306. 
  2. [2] M. Bača, Antimagic labelings of antiprisms, JCMCC, to appear. Zbl0982.05087
  3. [3] M. Bača, Special face numbering of plane quartic graphs, Ars Combinatoria, to appear. 
  4. [4] M. Bača, Face-antimagic labelings of convex polytopes, Utilitas Math. 55 (1999) 221-226. Zbl0940.05059
  5. [5] M. Bača, Consecutive-magic labeling of generalized Petersen graphs, Utilitas Math., to appear. Zbl0967.05056
  6. [6] M. Bača and Mirka Miller, Antimagic face labeling of convex polytopes based on biprisms, JCMCC, to appear. 
  7. [7] G.S. Bloom, A chronology of the Ringel-Kotzig conjecture and the continuing quest to call all trees graceful, Ann. N.Y. Acad. Sci. 326 (1979) 32-51, doi: 10.1111/j.1749-6632.1979.tb17766.x. Zbl0465.05027
  8. [8] G.S. Bloom and S.W. Golomb, Applications of numbered undirected graphs, Proc. IEEE 65 (1977) 562-570, doi: 10.1109/PROC.1977.10517. 
  9. [9] R. Bodendiek and G. Walther, Arithmetisch antimagische graphen, in: K. Wagner and R. Bodendiek, eds., Graphentheorie III (BI-Wiss.Verl., Mannheim, 1993). 
  10. [10] R. Bodendiek and G. Walther, On number theoretical methods in graph labelings, Res. Exp. Math. 21 (1995) 3-25. Zbl0829.05053
  11. [11] R. Bodendiek and G. Walther, On (a,d)-antimagic parachutes, Ars Combinatoria 42 (1996) 129-149. Zbl0851.05087
  12. [12] R. Bodendiek and G. Walther, On (a,d)-antimagic parachutes II, Ars Combinatoria 46 (1997) 33-63. Zbl0933.05128
  13. [13] M. Borowiecki and L.V. Quintas, Magic digraphs, in: 33. Intern. Wiss. Koll. TH Ilmenau (1988) 163-166. 
  14. [14] H. Enomoto, A.S. Llado, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 2 (1998) 105-109. Zbl0918.05090
  15. [15] R. Frucht and J.A. Gallian, Labeling prisms, Ars Combinatoria 26 (1988) 69-82. Zbl0678.05053
  16. [16] J.A. Gallian, A dynamic survey of graph labeling, Electronic J. Combinatorics 5 (1998) #DS6. Zbl0953.05067
  17. [17] N. Hartsfield and G Ringel, Pearls in Graph Theory (Academic Press, 1990). 
  18. [18] R.H. Jeurissen, Magic graphs, a characterization, Report 8201, Mathematisch Instituut, Katholieke Universiteit Nijmegen, 1982. Zbl0657.05065
  19. [19] S. Jezný and M. Trenkler, Characterization of magic graphs, Czechoslovak Math. J. 33 (1983) 435-438. Zbl0571.05030
  20. [20] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461, doi: 10.4153/CMB-1970-084-1. Zbl0213.26203
  21. [21] A. Kotzig and A. Rosa, Magic valuations of complete graphs, Publ. CRM 175 (1972). Zbl0213.26203
  22. [22] J.A. MacDougall, Mirka Miller, Slamin and W.D. Wallis, Vertex-magic total labellings of graphs, submitted. Zbl1008.05135
  23. [23] Mirka Miller, J.A. MacDougall, Slamin and W.D. Wallis, Problems in magic total graph labellings, in: Proceedings of the tenth AWOCA (1999) 19-25. 
  24. [24] Mirka Miller and M. Bača, Antimagic valuations of generalized Petersen graphs, Australasian J. Combin. 22 (2000) 135-139. Zbl0971.05098
  25. [25] Mirka Miller, M. Bača and Y. Lin, On two conjectures concerning (a,d)-antimagic labellings of antiprisms, JCMCC, to appear. 
  26. [26] Mirka Miller, M. Bača and J. A. MacDougall, Vertex-magic total labeling of the generalized Petersen graphs and convex polytopes, submitted. Zbl1121.05105
  27. [27] G. Ringel, Problem 25, Theory of Graphs and its Applications, in: Proc. Symposium Smolenice 1963 (Prague, 1964) 162. 
  28. [28] G. Ringel and A.S. Llado, Another tree conjecture, Bull. ICA 18 (1996) 83-85. Zbl0869.05057
  29. [29] A. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs (Internat. Symposium, Rome, July 1966; Gordon and Breach, N.Y. and Dunod Paris, 1967) 349-355. 
  30. [30] J. Sedlácek, Problem 27, in: Theory of Graphs and its Applications, Proc. Symposium Smolenice 1963 (Prague, 1964) 163-164. 
  31. [31] B.M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967) 427-438, doi: 10.4153/CJM-1967-035-9. Zbl0162.27801
  32. [32] W.D. Wallis, E.T. Baskoro, Mirka Miller and Slamin, Edge-magic total labelings, submitted. 
  33. [33] M.E. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969) 152-164, doi: 10.1016/S0021-9800(69)80116-X. Zbl0175.50303
  34. [34] D.B. West, An Introduction to Graph Theory (Prentice-Hall, 1996). Zbl0845.05001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.