Survey of certain valuations of graphs
Martin Bača; J.A. MacDougall; Mirka Miller; Slamin; W.D. Wallis
Discussiones Mathematicae Graph Theory (2000)
- Volume: 20, Issue: 2, page 219-229
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topMartin Bača, et al. "Survey of certain valuations of graphs." Discussiones Mathematicae Graph Theory 20.2 (2000): 219-229. <http://eudml.org/doc/270186>.
@article{MartinBača2000,
abstract = {The study of valuations of graphs is a relatively young part of graph theory. In this article we survey what is known about certain graph valuations, that is, labeling methods: antimagic labelings, edge-magic total labelings and vertex-magic total labelings.},
author = {Martin Bača, J.A. MacDougall, Mirka Miller, Slamin, W.D. Wallis},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {(a,d)-antimagic labeling; (a,d)-face antimagic labeling; edge-magic total labeling; vertex-magic total labeling; antimagic labeling},
language = {eng},
number = {2},
pages = {219-229},
title = {Survey of certain valuations of graphs},
url = {http://eudml.org/doc/270186},
volume = {20},
year = {2000},
}
TY - JOUR
AU - Martin Bača
AU - J.A. MacDougall
AU - Mirka Miller
AU - Slamin
AU - W.D. Wallis
TI - Survey of certain valuations of graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2000
VL - 20
IS - 2
SP - 219
EP - 229
AB - The study of valuations of graphs is a relatively young part of graph theory. In this article we survey what is known about certain graph valuations, that is, labeling methods: antimagic labelings, edge-magic total labelings and vertex-magic total labelings.
LA - eng
KW - (a,d)-antimagic labeling; (a,d)-face antimagic labeling; edge-magic total labeling; vertex-magic total labeling; antimagic labeling
UR - http://eudml.org/doc/270186
ER -
References
top- [1] M. Bača and I. Holländer, On (a,d)-antimagic prisms, Ars Combinatoria 48 (1998) 297-306.
- [2] M. Bača, Antimagic labelings of antiprisms, JCMCC, to appear. Zbl0982.05087
- [3] M. Bača, Special face numbering of plane quartic graphs, Ars Combinatoria, to appear.
- [4] M. Bača, Face-antimagic labelings of convex polytopes, Utilitas Math. 55 (1999) 221-226. Zbl0940.05059
- [5] M. Bača, Consecutive-magic labeling of generalized Petersen graphs, Utilitas Math., to appear. Zbl0967.05056
- [6] M. Bača and Mirka Miller, Antimagic face labeling of convex polytopes based on biprisms, JCMCC, to appear.
- [7] G.S. Bloom, A chronology of the Ringel-Kotzig conjecture and the continuing quest to call all trees graceful, Ann. N.Y. Acad. Sci. 326 (1979) 32-51, doi: 10.1111/j.1749-6632.1979.tb17766.x. Zbl0465.05027
- [8] G.S. Bloom and S.W. Golomb, Applications of numbered undirected graphs, Proc. IEEE 65 (1977) 562-570, doi: 10.1109/PROC.1977.10517.
- [9] R. Bodendiek and G. Walther, Arithmetisch antimagische graphen, in: K. Wagner and R. Bodendiek, eds., Graphentheorie III (BI-Wiss.Verl., Mannheim, 1993).
- [10] R. Bodendiek and G. Walther, On number theoretical methods in graph labelings, Res. Exp. Math. 21 (1995) 3-25. Zbl0829.05053
- [11] R. Bodendiek and G. Walther, On (a,d)-antimagic parachutes, Ars Combinatoria 42 (1996) 129-149. Zbl0851.05087
- [12] R. Bodendiek and G. Walther, On (a,d)-antimagic parachutes II, Ars Combinatoria 46 (1997) 33-63. Zbl0933.05128
- [13] M. Borowiecki and L.V. Quintas, Magic digraphs, in: 33. Intern. Wiss. Koll. TH Ilmenau (1988) 163-166.
- [14] H. Enomoto, A.S. Llado, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 2 (1998) 105-109. Zbl0918.05090
- [15] R. Frucht and J.A. Gallian, Labeling prisms, Ars Combinatoria 26 (1988) 69-82. Zbl0678.05053
- [16] J.A. Gallian, A dynamic survey of graph labeling, Electronic J. Combinatorics 5 (1998) #DS6. Zbl0953.05067
- [17] N. Hartsfield and G Ringel, Pearls in Graph Theory (Academic Press, 1990).
- [18] R.H. Jeurissen, Magic graphs, a characterization, Report 8201, Mathematisch Instituut, Katholieke Universiteit Nijmegen, 1982. Zbl0657.05065
- [19] S. Jezný and M. Trenkler, Characterization of magic graphs, Czechoslovak Math. J. 33 (1983) 435-438. Zbl0571.05030
- [20] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461, doi: 10.4153/CMB-1970-084-1. Zbl0213.26203
- [21] A. Kotzig and A. Rosa, Magic valuations of complete graphs, Publ. CRM 175 (1972). Zbl0213.26203
- [22] J.A. MacDougall, Mirka Miller, Slamin and W.D. Wallis, Vertex-magic total labellings of graphs, submitted. Zbl1008.05135
- [23] Mirka Miller, J.A. MacDougall, Slamin and W.D. Wallis, Problems in magic total graph labellings, in: Proceedings of the tenth AWOCA (1999) 19-25.
- [24] Mirka Miller and M. Bača, Antimagic valuations of generalized Petersen graphs, Australasian J. Combin. 22 (2000) 135-139. Zbl0971.05098
- [25] Mirka Miller, M. Bača and Y. Lin, On two conjectures concerning (a,d)-antimagic labellings of antiprisms, JCMCC, to appear.
- [26] Mirka Miller, M. Bača and J. A. MacDougall, Vertex-magic total labeling of the generalized Petersen graphs and convex polytopes, submitted. Zbl1121.05105
- [27] G. Ringel, Problem 25, Theory of Graphs and its Applications, in: Proc. Symposium Smolenice 1963 (Prague, 1964) 162.
- [28] G. Ringel and A.S. Llado, Another tree conjecture, Bull. ICA 18 (1996) 83-85. Zbl0869.05057
- [29] A. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs (Internat. Symposium, Rome, July 1966; Gordon and Breach, N.Y. and Dunod Paris, 1967) 349-355.
- [30] J. Sedlácek, Problem 27, in: Theory of Graphs and its Applications, Proc. Symposium Smolenice 1963 (Prague, 1964) 163-164.
- [31] B.M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967) 427-438, doi: 10.4153/CJM-1967-035-9. Zbl0162.27801
- [32] W.D. Wallis, E.T. Baskoro, Mirka Miller and Slamin, Edge-magic total labelings, submitted.
- [33] M.E. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969) 152-164, doi: 10.1016/S0021-9800(69)80116-X. Zbl0175.50303
- [34] D.B. West, An Introduction to Graph Theory (Prentice-Hall, 1996). Zbl0845.05001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.