# On a sphere of influence graph in a one-dimensional space

Zbigniew Palka; Monika Sperling

Discussiones Mathematicae Graph Theory (2005)

- Volume: 25, Issue: 3, page 427-433
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topZbigniew Palka, and Monika Sperling. "On a sphere of influence graph in a one-dimensional space." Discussiones Mathematicae Graph Theory 25.3 (2005): 427-433. <http://eudml.org/doc/270198>.

@article{ZbigniewPalka2005,

abstract = {A sphere of influence graph generated by a finite population of generated points on the real line by a Poisson process is considered. We determine the expected number and variance of societies formed by population of n points in a one-dimensional space.},

author = {Zbigniew Palka, Monika Sperling},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {cluster; sphere of influence graph},

language = {eng},

number = {3},

pages = {427-433},

title = {On a sphere of influence graph in a one-dimensional space},

url = {http://eudml.org/doc/270198},

volume = {25},

year = {2005},

}

TY - JOUR

AU - Zbigniew Palka

AU - Monika Sperling

TI - On a sphere of influence graph in a one-dimensional space

JO - Discussiones Mathematicae Graph Theory

PY - 2005

VL - 25

IS - 3

SP - 427

EP - 433

AB - A sphere of influence graph generated by a finite population of generated points on the real line by a Poisson process is considered. We determine the expected number and variance of societies formed by population of n points in a one-dimensional space.

LA - eng

KW - cluster; sphere of influence graph

UR - http://eudml.org/doc/270198

ER -

## References

top- [1] P. Avis and J. Horton, Remarks on the sphere of influence graph, in: ed. J.E. Goodman, et al. Discrete Geometry and Convexity (New York Academy of Science, New York) 323-327. Zbl0573.52013
- [2] T. Chalker, A. Godbole, P. Hitczenko, J. Radcliff and O. Ruehr, On the size of a random sphere of influence graph, Adv. in Appl. Probab. 31 (1999) 596-609, doi: 10.1239/aap/1029955193. Zbl0944.60019
- [3] E.G. Enns, P.F. Ehlers and T. Misi, A cluster problem as defined by nearest neighbours, The Canadian Journal of Statistics 27 (1999) 843-851, doi: 10.2307/3316135. Zbl0949.60030
- [4] Z. Furedi, The expected size of a random sphere of influence graph, Intuitive Geometry, Bolyai Math. Soc. 6 (1995) 319-326. Zbl0881.05113
- [5] Z. Furedi and P.A. Loeb, On the best constant on the Besicovitch covering theorem, in: Proc. Coll. Math. Soc. J. Bolyai 63 (1994) 1063-1073. Zbl0802.28002
- [6] P. Hitczenko, S. Janson and J.E. Yukich, On the variance of the random sphere of influence graph, Random Struct. Alg. 14 (1999) 139-152, doi: 10.1002/(SICI)1098-2418(199903)14:2<139::AID-RSA2>3.0.CO;2-E Zbl0922.60025
- [7] L. Guibas, J. Pach and M. Sharir, Sphere of influence graphs in higher dimensions, in: Proc. Coll. Math. Soc. J. Bolyai 63 (1994) 131-137. Zbl0821.52003
- [8] T.S. Michael and T. Quint, Sphere of influence graphs: a survey, Congr. Numer. 105 (1994) 153-160. Zbl0835.05078
- [9] T.S. Michael and T. Quint, Sphere of influence graphs and the L_∞-metric, Discrete Appl. Math. 127 (2003) 447-460, doi: 10.1016/S0166-218X(02)00246-9. Zbl1018.05094
- [10] Toussaint, Pattern recognition of geometric complexity, in: Proceedings of the 5th Int. Conference on Pattern Recognition, (1980) 1324-1347.
- [11] D. Warren and E. Seneta, Peaks and eulerian numbers in a random sequence, J. Appl. Prob. 33 (1996) 101-114, doi: 10.2307/3215267. Zbl0845.60035

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.