# Some characterizations of 2-primal ideals of a Γ-semiring

Suhrid Dhara; Tapan Kumar Dutta

Discussiones Mathematicae - General Algebra and Applications (2014)

- Volume: 34, Issue: 1, page 95-107
- ISSN: 1509-9415

## Access Full Article

top## Abstract

top## How to cite

topSuhrid Dhara, and Tapan Kumar Dutta. "Some characterizations of 2-primal ideals of a Γ-semiring." Discussiones Mathematicae - General Algebra and Applications 34.1 (2014): 95-107. <http://eudml.org/doc/270204>.

@article{SuhridDhara2014,

abstract = {This paper is a continuation of our previous paper entitled "On 2-primal Γ-semirings". In this paper we have introduced the notion of 2-primal ideal in Γ-semiring and studied it.},

author = {Suhrid Dhara, Tapan Kumar Dutta},

journal = {Discussiones Mathematicae - General Algebra and Applications},

keywords = {Γ-semiring; nilpotent element; 2-primal Γ-semiring; 2-primal ideal; IFP (insertion of factor property); completely prime ideal; completely semiprime ideal},

language = {eng},

number = {1},

pages = {95-107},

title = {Some characterizations of 2-primal ideals of a Γ-semiring},

url = {http://eudml.org/doc/270204},

volume = {34},

year = {2014},

}

TY - JOUR

AU - Suhrid Dhara

AU - Tapan Kumar Dutta

TI - Some characterizations of 2-primal ideals of a Γ-semiring

JO - Discussiones Mathematicae - General Algebra and Applications

PY - 2014

VL - 34

IS - 1

SP - 95

EP - 107

AB - This paper is a continuation of our previous paper entitled "On 2-primal Γ-semirings". In this paper we have introduced the notion of 2-primal ideal in Γ-semiring and studied it.

LA - eng

KW - Γ-semiring; nilpotent element; 2-primal Γ-semiring; 2-primal ideal; IFP (insertion of factor property); completely prime ideal; completely semiprime ideal

UR - http://eudml.org/doc/270204

ER -

## References

top- [1] C. Selvaraj and S. Petchimuthu, Characterization of 2-Primal Γ-Rings, Southeast Asian Bull. Math. 34 (2010) 1083-1094. Zbl1224.16112
- [2] C. Selvaraj and S. Petchimuthu, Characterization of 2-primal ideals, Far East J. Math. Sci. 28 (2008) 249-256. Zbl1147.16003
- [3] G.F. Birkenmeier, H.E. Heatherly and E.K. Lee, Completely Prime Ideals and Associated Radicals, in: Proc. Biennial Ohio State-Denision Conference 1992, S.K. Jain and S.T. Rizvi (Ed(s)), (World Scientific, New Jersey, 1993) 102-129. Zbl0853.16022
- [4] M.M.K. Rao, Γ-semiring-I, Southeast Asian Bull. Math. 19 (1995) 49-54.
- [5] M.M.K. Rao, Γ-semiring-II, Southeast Asian Bull. Math. 21 (1997) 281-287.
- [6] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964) 81-89. Zbl0135.02701
- [7] P.J. Allen and W.R. Windham, Operator semigroup with applications to semiring, Publicationes Mathematicae 20 (1973) 161-175. Zbl0278.20066
- [8] S.K. Sardar, On Jacobson radical of a Γ-semiring, Far East J. Math. Sci. 35 (2005) 1-9. Zbl1105.16041
- [9] S.K. Sardar and U. Dasgupta, On primitive Γ-semiring, Far East J. Math. Sci. 34 (2004) 1-12. Zbl1212.16093
- [10] T.K. Dutta and S.K. Sardar, On prime ideals and prime radical of a Γ-semirings, ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII 'AL.I.CUZA' IAŞI, Matematică Tomul XLVI.s.I.a, f.2 (2000) 319-329.
- [11] T.K. Dutta and S.K. Sardar, Semiprime ideals and irreducible ideals of Γ-semirings, Novi Sad J. Math. 30 (2000) 97-108. Zbl1005.16045
- [12] T.K. Dutta and S.K. Sardar, On the operator semirings of a Γ-semiring, Southeast Asian Bull. Math., Springer-Verlag 26 (2002) 203-213. Zbl1035.16039
- [13] T.K. Dutta and S.K. Sardar, On Levitzki radical of a Γ-semiring, Bull. Calcutta Math. Soc. 95 (2003) 113-120. Zbl1058.16040
- [14] T.K. Dutta and S. Dhara, On uniformly strongly prime Γ-semirings, Southeast Asian Bull. Math. 30 (2006) 39-48. Zbl1117.16034
- [15] T.K. Dutta and S. Dhara, On uniformly strongly prime Γ-semirings (II), Discuss. Math. General Algebra and Appl. 26 (2006) 219-231. Zbl1130.16310
- [16] T.K. Dutta and S. Dhara, On strongly prime Γ-semirings, ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII 'AL.I.CUZA' DIN IAŞI(S. N.) Matematică Tomul LV, f.1 (2009) 213-224.
- [17] T.K. Dutta and S. Dhara, On 2-primal Γ-semirings, Southeast Asian Bull. Math. 37 (2013) 699-714. Zbl1299.16043
- [18] T.K. Dutta, K.P. Shum and S. Dhara, On NI Γ-semirings, Int. J. Pure and Appl. Math. 84 (2013) 279-298. doi: 10.12732/ijpam.v84i3.14.
- [19] W.E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966) 411-422. doi: 10.2140/pjm.1966.18.411. Zbl0161.03303

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.