Convexity of sublevel sets of plurisubharmonic extremal functions

Finnur Lárusson; Patrice Lassere; Ragnar Sigurdsson

Annales Polonici Mathematici (1998)

  • Volume: 68, Issue: 3, page 267-273
  • ISSN: 0066-2216

Abstract

top
Let X be a convex domain in ℂⁿ and let E be a convex subset of X. The relative extremal function u E , X for E in X is the supremum of the class of plurisubharmonic functions v ≤ 0 on X with v ≤ -1 on E. We show that if E is either open or compact, then the sublevel sets of u E , X are convex. The proof uses the theory of envelopes of disc functionals and a new result on Blaschke products.

How to cite

top

Finnur Lárusson, Patrice Lassere, and Ragnar Sigurdsson. "Convexity of sublevel sets of plurisubharmonic extremal functions." Annales Polonici Mathematici 68.3 (1998): 267-273. <http://eudml.org/doc/270205>.

@article{FinnurLárusson1998,
abstract = {Let X be a convex domain in ℂⁿ and let E be a convex subset of X. The relative extremal function $u_\{E,X\}$ for E in X is the supremum of the class of plurisubharmonic functions v ≤ 0 on X with v ≤ -1 on E. We show that if E is either open or compact, then the sublevel sets of $u_\{E,X\}$ are convex. The proof uses the theory of envelopes of disc functionals and a new result on Blaschke products.},
author = {Finnur Lárusson, Patrice Lassere, Ragnar Sigurdsson},
journal = {Annales Polonici Mathematici},
keywords = {plurisubharmonic; relative extremal function; convex; disc functional; envelope; Blaschke product; plurisubharmonic relative extremal function; disc functionals},
language = {eng},
number = {3},
pages = {267-273},
title = {Convexity of sublevel sets of plurisubharmonic extremal functions},
url = {http://eudml.org/doc/270205},
volume = {68},
year = {1998},
}

TY - JOUR
AU - Finnur Lárusson
AU - Patrice Lassere
AU - Ragnar Sigurdsson
TI - Convexity of sublevel sets of plurisubharmonic extremal functions
JO - Annales Polonici Mathematici
PY - 1998
VL - 68
IS - 3
SP - 267
EP - 273
AB - Let X be a convex domain in ℂⁿ and let E be a convex subset of X. The relative extremal function $u_{E,X}$ for E in X is the supremum of the class of plurisubharmonic functions v ≤ 0 on X with v ≤ -1 on E. We show that if E is either open or compact, then the sublevel sets of $u_{E,X}$ are convex. The proof uses the theory of envelopes of disc functionals and a new result on Blaschke products.
LA - eng
KW - plurisubharmonic; relative extremal function; convex; disc functional; envelope; Blaschke product; plurisubharmonic relative extremal function; disc functionals
UR - http://eudml.org/doc/270205
ER -

References

top
  1. A. Edigarian and E. A. Poletsky, Product property of the relative extremal function, preprint, 1997. Zbl0898.32010
  2. M. Klimek, Pluripotential Theory, Oxford Univ. Press, 1991. 
  3. F. Lárusson and R. Sigurdsson, Plurisubharmonic functions and analytic discs on manifolds, Report RH-15-96, Science Institute, University of Iceland, 1996. Zbl0901.31004
  4. S. Momm, Boundary behavior of extremal plurisubharmonic functions, Acta Math. 172 (1994), 51-75. Zbl0802.32024
  5. S. Momm, An extremal plurisubharmonic function associated to a convex pluricomplex Green function with pole at infinity, J. Reine Angew. Math. 471 (1996), 139-163. Zbl0848.31008
  6. K. Noshiro, Cluster Sets, Ergeb. Math. Grenzgeb. 28, Springer, 1960. Zbl0090.28801
  7. M. Papadimitrakis, On convexity of level curves of harmonic functions in the hyperbolic plane, Proc. Amer. Math. Soc. 114 (1992), 695-698. Zbl0746.31002
  8. E. A. Poletsky, Plurisubharmonic functions as solutions of variational problems, in: Proc. Sympos. Pure Math. 52, Part 1, Amer. Math. Soc., 1991, 163-171. Zbl0739.32015
  9. E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144. Zbl0811.32010
  10. J.-P. Rosay and W. Rudin, A maximum principle for sums of subharmonic functions, and the convexity of level sets, Michigan Math. J. 36 (1989), 95-111. Zbl0678.31003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.