Convexity of sublevel sets of plurisubharmonic extremal functions
Finnur Lárusson; Patrice Lassere; Ragnar Sigurdsson
Annales Polonici Mathematici (1998)
- Volume: 68, Issue: 3, page 267-273
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topFinnur Lárusson, Patrice Lassere, and Ragnar Sigurdsson. "Convexity of sublevel sets of plurisubharmonic extremal functions." Annales Polonici Mathematici 68.3 (1998): 267-273. <http://eudml.org/doc/270205>.
@article{FinnurLárusson1998,
abstract = {Let X be a convex domain in ℂⁿ and let E be a convex subset of X. The relative extremal function $u_\{E,X\}$ for E in X is the supremum of the class of plurisubharmonic functions v ≤ 0 on X with v ≤ -1 on E. We show that if E is either open or compact, then the sublevel sets of $u_\{E,X\}$ are convex. The proof uses the theory of envelopes of disc functionals and a new result on Blaschke products.},
author = {Finnur Lárusson, Patrice Lassere, Ragnar Sigurdsson},
journal = {Annales Polonici Mathematici},
keywords = {plurisubharmonic; relative extremal function; convex; disc functional; envelope; Blaschke product; plurisubharmonic relative extremal function; disc functionals},
language = {eng},
number = {3},
pages = {267-273},
title = {Convexity of sublevel sets of plurisubharmonic extremal functions},
url = {http://eudml.org/doc/270205},
volume = {68},
year = {1998},
}
TY - JOUR
AU - Finnur Lárusson
AU - Patrice Lassere
AU - Ragnar Sigurdsson
TI - Convexity of sublevel sets of plurisubharmonic extremal functions
JO - Annales Polonici Mathematici
PY - 1998
VL - 68
IS - 3
SP - 267
EP - 273
AB - Let X be a convex domain in ℂⁿ and let E be a convex subset of X. The relative extremal function $u_{E,X}$ for E in X is the supremum of the class of plurisubharmonic functions v ≤ 0 on X with v ≤ -1 on E. We show that if E is either open or compact, then the sublevel sets of $u_{E,X}$ are convex. The proof uses the theory of envelopes of disc functionals and a new result on Blaschke products.
LA - eng
KW - plurisubharmonic; relative extremal function; convex; disc functional; envelope; Blaschke product; plurisubharmonic relative extremal function; disc functionals
UR - http://eudml.org/doc/270205
ER -
References
top- A. Edigarian and E. A. Poletsky, Product property of the relative extremal function, preprint, 1997. Zbl0898.32010
- M. Klimek, Pluripotential Theory, Oxford Univ. Press, 1991.
- F. Lárusson and R. Sigurdsson, Plurisubharmonic functions and analytic discs on manifolds, Report RH-15-96, Science Institute, University of Iceland, 1996. Zbl0901.31004
- S. Momm, Boundary behavior of extremal plurisubharmonic functions, Acta Math. 172 (1994), 51-75. Zbl0802.32024
- S. Momm, An extremal plurisubharmonic function associated to a convex pluricomplex Green function with pole at infinity, J. Reine Angew. Math. 471 (1996), 139-163. Zbl0848.31008
- K. Noshiro, Cluster Sets, Ergeb. Math. Grenzgeb. 28, Springer, 1960. Zbl0090.28801
- M. Papadimitrakis, On convexity of level curves of harmonic functions in the hyperbolic plane, Proc. Amer. Math. Soc. 114 (1992), 695-698. Zbl0746.31002
- E. A. Poletsky, Plurisubharmonic functions as solutions of variational problems, in: Proc. Sympos. Pure Math. 52, Part 1, Amer. Math. Soc., 1991, 163-171. Zbl0739.32015
- E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144. Zbl0811.32010
- J.-P. Rosay and W. Rudin, A maximum principle for sums of subharmonic functions, and the convexity of level sets, Michigan Math. J. 36 (1989), 95-111. Zbl0678.31003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.