A note on generalized flag structures
Annales Polonici Mathematici (1998)
- Volume: 69, Issue: 1, page 89-97
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topTomasz Rybicki. "A note on generalized flag structures." Annales Polonici Mathematici 69.1 (1998): 89-97. <http://eudml.org/doc/270209>.
@article{TomaszRybicki1998,
abstract = {Generalized flag structures occur naturally in modern geometry. By extending Stefan's well-known statement on generalized foliations we show that such structures admit distinguished charts. Several examples are included.},
author = {Tomasz Rybicki},
journal = {Annales Polonici Mathematici},
keywords = {generalized foliation; subfoliation; flag structure; distinguished chart; generalized foliations; distinguished charts},
language = {eng},
number = {1},
pages = {89-97},
title = {A note on generalized flag structures},
url = {http://eudml.org/doc/270209},
volume = {69},
year = {1998},
}
TY - JOUR
AU - Tomasz Rybicki
TI - A note on generalized flag structures
JO - Annales Polonici Mathematici
PY - 1998
VL - 69
IS - 1
SP - 89
EP - 97
AB - Generalized flag structures occur naturally in modern geometry. By extending Stefan's well-known statement on generalized foliations we show that such structures admit distinguished charts. Several examples are included.
LA - eng
KW - generalized foliation; subfoliation; flag structure; distinguished chart; generalized foliations; distinguished charts
UR - http://eudml.org/doc/270209
ER -
References
top- [1] M. Bauer, Feuilletage singulier défini par une distribution presque régulière, Thèse, Univ. Louis Pasteur (Strasbourg), Publ. I.R.M.A., 1985. Zbl0657.58005
- [2] P. Dazord, Feuilletages à singularités, Indag. Math. 47 (1985), 21-39. Zbl0584.57016
- [3] P. Dazord, A. Lichnerowicz et C. M. Marle, Structure locale des variétés de Jacobi, J. Math. Pures Appl. 70 (1991), 101-152. Zbl0659.53033
- [4] R. Ibáñez, M. de León, J. C. Marrero and D. Martin de Diego, Dynamics of generalized Poisson and Nambu-Poisson brackets, J. Math. Phys. 38 (1997), 2332-2344. Zbl0878.58024
- [5] R. Ibáñez, M. de León, J. C. Marrero and E. Padrón, Nambu-Jacobi and generalized Jacobi manifolds, preprint, 1997.
- [6] C. M. Marle, Lie group actions on a canonical manifold, in: Symplectic Geometry, A. Crumeyrolle and J. Grifone (eds.), Pitman, Boston, 1983, 144-166.
- [7] P. W. Michor and A. M. Vinogradov, n-ary Lie and associative algebras, preprint ESI 402, 1996.
- [8] P. W. Michor and C. Vizman, n-transitivity of certain diffeomorphism groups, Acta Math. Univ. Comenian. 63 (1994), 221-225.
- [9] P. Molino, Riemannian Foliations, Progr. Math. 73, Birkhäuser, 1988.
- [10] P. Molino, Orbit-like foliations, in: Geometric Study of Foliations (Tokyo, 1993), World Sci., Singapore, 1994, 97-119.
- [11] R. Ouzilou, Hamiltonian actions on Poisson manifolds, in: Symplectic Geometry, A. Crumeyrolle and J. Grifone (eds.), Pitman, Boston, 1983, 172-183. Zbl0514.58010
- [12] T. Rybicki, Pseudo-n-transitivity of the automorphism group of a geometric structure, Geom. Dedicata 67 (1997), 181-186. Zbl0896.58014
- [13] P. Stefan, Accessibility and foliations with singularities, Bull. Amer. Math. Soc. 80 (1974), 1142-1145. Zbl0293.57015
- [14] P. Stefan, Accessible sets, orbits and foliations with singularities, Proc. London Math. Soc. 29 (1974), 699-713. Zbl0342.57015
- [15] H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188. Zbl0274.58002
- [16] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progr. Math. 118, Birkhäuser, Basel, 1994.
- [17] V. P. Vilflyantsev, Frobenius theorem for differential systems with singularities, Vestnik Moskov. Univ. 3 (1980), 11-14 (in Russian).
- [18] R. A. Wolak, Characteristic classes of almost-flag structures, Geom. Dedicata 24 (1987), 207-220. Zbl0682.57008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.