A note on generalized flag structures

Tomasz Rybicki

Annales Polonici Mathematici (1998)

  • Volume: 69, Issue: 1, page 89-97
  • ISSN: 0066-2216

Abstract

top
Generalized flag structures occur naturally in modern geometry. By extending Stefan's well-known statement on generalized foliations we show that such structures admit distinguished charts. Several examples are included.

How to cite

top

Tomasz Rybicki. "A note on generalized flag structures." Annales Polonici Mathematici 69.1 (1998): 89-97. <http://eudml.org/doc/270209>.

@article{TomaszRybicki1998,
abstract = {Generalized flag structures occur naturally in modern geometry. By extending Stefan's well-known statement on generalized foliations we show that such structures admit distinguished charts. Several examples are included.},
author = {Tomasz Rybicki},
journal = {Annales Polonici Mathematici},
keywords = {generalized foliation; subfoliation; flag structure; distinguished chart; generalized foliations; distinguished charts},
language = {eng},
number = {1},
pages = {89-97},
title = {A note on generalized flag structures},
url = {http://eudml.org/doc/270209},
volume = {69},
year = {1998},
}

TY - JOUR
AU - Tomasz Rybicki
TI - A note on generalized flag structures
JO - Annales Polonici Mathematici
PY - 1998
VL - 69
IS - 1
SP - 89
EP - 97
AB - Generalized flag structures occur naturally in modern geometry. By extending Stefan's well-known statement on generalized foliations we show that such structures admit distinguished charts. Several examples are included.
LA - eng
KW - generalized foliation; subfoliation; flag structure; distinguished chart; generalized foliations; distinguished charts
UR - http://eudml.org/doc/270209
ER -

References

top
  1. [1] M. Bauer, Feuilletage singulier défini par une distribution presque régulière, Thèse, Univ. Louis Pasteur (Strasbourg), Publ. I.R.M.A., 1985. Zbl0657.58005
  2. [2] P. Dazord, Feuilletages à singularités, Indag. Math. 47 (1985), 21-39. Zbl0584.57016
  3. [3] P. Dazord, A. Lichnerowicz et C. M. Marle, Structure locale des variétés de Jacobi, J. Math. Pures Appl. 70 (1991), 101-152. Zbl0659.53033
  4. [4] R. Ibáñez, M. de León, J. C. Marrero and D. Martin de Diego, Dynamics of generalized Poisson and Nambu-Poisson brackets, J. Math. Phys. 38 (1997), 2332-2344. Zbl0878.58024
  5. [5] R. Ibáñez, M. de León, J. C. Marrero and E. Padrón, Nambu-Jacobi and generalized Jacobi manifolds, preprint, 1997. 
  6. [6] C. M. Marle, Lie group actions on a canonical manifold, in: Symplectic Geometry, A. Crumeyrolle and J. Grifone (eds.), Pitman, Boston, 1983, 144-166. 
  7. [7] P. W. Michor and A. M. Vinogradov, n-ary Lie and associative algebras, preprint ESI 402, 1996. 
  8. [8] P. W. Michor and C. Vizman, n-transitivity of certain diffeomorphism groups, Acta Math. Univ. Comenian. 63 (1994), 221-225. 
  9. [9] P. Molino, Riemannian Foliations, Progr. Math. 73, Birkhäuser, 1988. 
  10. [10] P. Molino, Orbit-like foliations, in: Geometric Study of Foliations (Tokyo, 1993), World Sci., Singapore, 1994, 97-119. 
  11. [11] R. Ouzilou, Hamiltonian actions on Poisson manifolds, in: Symplectic Geometry, A. Crumeyrolle and J. Grifone (eds.), Pitman, Boston, 1983, 172-183. Zbl0514.58010
  12. [12] T. Rybicki, Pseudo-n-transitivity of the automorphism group of a geometric structure, Geom. Dedicata 67 (1997), 181-186. Zbl0896.58014
  13. [13] P. Stefan, Accessibility and foliations with singularities, Bull. Amer. Math. Soc. 80 (1974), 1142-1145. Zbl0293.57015
  14. [14] P. Stefan, Accessible sets, orbits and foliations with singularities, Proc. London Math. Soc. 29 (1974), 699-713. Zbl0342.57015
  15. [15] H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188. Zbl0274.58002
  16. [16] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progr. Math. 118, Birkhäuser, Basel, 1994. 
  17. [17] V. P. Vilflyantsev, Frobenius theorem for differential systems with singularities, Vestnik Moskov. Univ. 3 (1980), 11-14 (in Russian). 
  18. [18] R. A. Wolak, Characteristic classes of almost-flag structures, Geom. Dedicata 24 (1987), 207-220. Zbl0682.57008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.