A note on variational-type inequalities for (η,θ,δ)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2013)
- Volume: 33, Issue: 1, page 41-45
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S.-S. Chang, B.-S. Lee and Y.-Q. Chen, Variational inequalities for monotone operators in nonreflexive Banach spaces, Appl. Math. Lett. 8 (6) (1995), 29-34. doi: 10.1016/0893-9659(95)00081-Z Zbl0840.47052
- [2] K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310. doi: 10.1007/BF01353421 Zbl0093.36701
- [3] B.-S. Lee and G.-M. Lee, Variational inequalities for (η,θ)-pseudomonotone operators in nonreflexive Banach spaces, Appl. Math. Lett. 12 (5) (1999), 13-17. doi: 10.1016/S0893-9659(99)00050-6 Zbl0954.47052
- [4] B.-S. Lee, G.-M. Lee and S.-J. Lee, Variational-type inequalities for (η,θ,δ)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces, Appl. Math. Lett. 15 (1) (2002), 109-114. doi: 10.1016/S0893-9659(01)00101-X Zbl1032.47043
- [5] B.-S. Lee and J.-D. Noh, Minty's lemma for (θ,η)-pseudomonotone-type set-valued mappings and applications, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 9 (1) (2002), 47-55.
- [6] R.U. Verma, Variational inequalities involving strongly pseudomonotone hemicontinuous mappings in nonreflexive Banach spaces, Appl. Math. Lett. 11 (2) (1998), 41-43. doi: 10.1016/S0893-9659(98)00008-1 Zbl06587015
- [7] P.J. Watson, Variational inequalities in nonreflexive Banach spaces, Appl. Math. Lett. 10 (2) (1997), 45-48. doi: 10.1016/S0893-9659(97)00009-8 Zbl0907.49003