On the second largest eigenvalue of a mixed graph

Jun Zhou; Yi-Zheng Fan; Yi Wang

Discussiones Mathematicae Graph Theory (2007)

  • Volume: 27, Issue: 2, page 373-384
  • ISSN: 2083-5892

Abstract

top
Let G be a mixed graph. We discuss the relation between the second largest eigenvalue λ₂(G) and the second largest degree d₂(G), and present a sufficient condition for λ₂(G) ≥ d₂(G).

How to cite

top

Jun Zhou, Yi-Zheng Fan, and Yi Wang. "On the second largest eigenvalue of a mixed graph." Discussiones Mathematicae Graph Theory 27.2 (2007): 373-384. <http://eudml.org/doc/270233>.

@article{JunZhou2007,
abstract = {Let G be a mixed graph. We discuss the relation between the second largest eigenvalue λ₂(G) and the second largest degree d₂(G), and present a sufficient condition for λ₂(G) ≥ d₂(G).},
author = {Jun Zhou, Yi-Zheng Fan, Yi Wang},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {mixed graph; Laplacian eigenvalue; degree},
language = {eng},
number = {2},
pages = {373-384},
title = {On the second largest eigenvalue of a mixed graph},
url = {http://eudml.org/doc/270233},
volume = {27},
year = {2007},
}

TY - JOUR
AU - Jun Zhou
AU - Yi-Zheng Fan
AU - Yi Wang
TI - On the second largest eigenvalue of a mixed graph
JO - Discussiones Mathematicae Graph Theory
PY - 2007
VL - 27
IS - 2
SP - 373
EP - 384
AB - Let G be a mixed graph. We discuss the relation between the second largest eigenvalue λ₂(G) and the second largest degree d₂(G), and present a sufficient condition for λ₂(G) ≥ d₂(G).
LA - eng
KW - mixed graph; Laplacian eigenvalue; degree
UR - http://eudml.org/doc/270233
ER -

References

top
  1. [1] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra 46 (1999) 299-312, doi: 10.1080/03081089908818623. Zbl0940.05042
  2. [2] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Edge version of the matrix tree theorem for trees, Linear and Multilinear Algebra 47 (2000) 217-229, doi: 10.1080/03081080008818646. Zbl0960.05067
  3. [3] Y.-Z. Fan, Largest eigenvalue of a unicyclic mixed graph, Applied Mathematics A Journal of Chinese Universities (English Series) 19 (2004) 140-148. Zbl1059.05072
  4. [4] Y.-Z. Fan, On the least eigenvalue of a unicyclic mixed graph, Linear and Multilinear Algebra 53 (2005) 97-113, doi: 10.1080/03081080410001681540. Zbl1062.05090
  5. [5] Y.-Z. Fan, On spectral integral variations of mixed graphs, Linear Algebra Appl. 374 (2003) 307-316, doi: 10.1016/S0024-3795(03)00575-5. Zbl1026.05076
  6. [6] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305. 
  7. [7] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975) 619-633. Zbl0437.15004
  8. [8] R. Grone and R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math. 7 (1994) 221-229, doi: 10.1137/S0895480191222653. Zbl0795.05092
  9. [9] J.-M. Guo and S.-W. Tan, A relation between the matching number and the Laplacian spectrum of a graph, Linear Algebra Appl. 325 (2001) 71-74, doi: 10.1016/S0024-3795(00)00333-5. 
  10. [10] R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge Univ. Press, Cambridge, 1985). Zbl0576.15001
  11. [11] Y.-P. Hou, J.-S. Li and Y.-L. Pan, On the Laplacian eigenvalues of signed graphs, Linear and Multilinear Algebra 51 (2003) 21-30, doi: 10.1080/0308108031000053611. 
  12. [12] J.-S. Li and Y.-L. Pan, A note on the second largest eigenvalue of the Laplacian matrix of a graph, Linear and Multilinear Algebra 48 (2000) 117-121, doi: 10.1080/03081080008818663. Zbl0979.15016
  13. [13] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197/198 (1998) 143-176, doi: 10.1016/0024-3795(94)90486-3. Zbl0802.05053
  14. [14] B. Mohar, Some applications of Laplacian eigenvalues of graphs, in: Graph Symmetry, G. Hahn and G. Sabidussi, eds (Kluwer Academic Publishers, Dordrecht, 1997) 225-275. Zbl0883.05096
  15. [15] X.-D. Zhang and J.-S. Li, The Laplacian spectrum of a mixed graph, Linear Algebra Appl. 353 (2002) 11-20, doi: 10.1016/S0024-3795(01)00538-9. Zbl1003.05073
  16. [16] X.-D. Zhang and R. Luo, The Laplacian eigenvalues of a mixed graph, Linear Algebra Appl. 353 (2003) 109-119, doi: 10.1016/S0024-3795(02)00509-8. Zbl1017.05078

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.