On the second largest eigenvalue of a mixed graph
Jun Zhou; Yi-Zheng Fan; Yi Wang
Discussiones Mathematicae Graph Theory (2007)
- Volume: 27, Issue: 2, page 373-384
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topJun Zhou, Yi-Zheng Fan, and Yi Wang. "On the second largest eigenvalue of a mixed graph." Discussiones Mathematicae Graph Theory 27.2 (2007): 373-384. <http://eudml.org/doc/270233>.
@article{JunZhou2007,
abstract = {Let G be a mixed graph. We discuss the relation between the second largest eigenvalue λ₂(G) and the second largest degree d₂(G), and present a sufficient condition for λ₂(G) ≥ d₂(G).},
author = {Jun Zhou, Yi-Zheng Fan, Yi Wang},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {mixed graph; Laplacian eigenvalue; degree},
language = {eng},
number = {2},
pages = {373-384},
title = {On the second largest eigenvalue of a mixed graph},
url = {http://eudml.org/doc/270233},
volume = {27},
year = {2007},
}
TY - JOUR
AU - Jun Zhou
AU - Yi-Zheng Fan
AU - Yi Wang
TI - On the second largest eigenvalue of a mixed graph
JO - Discussiones Mathematicae Graph Theory
PY - 2007
VL - 27
IS - 2
SP - 373
EP - 384
AB - Let G be a mixed graph. We discuss the relation between the second largest eigenvalue λ₂(G) and the second largest degree d₂(G), and present a sufficient condition for λ₂(G) ≥ d₂(G).
LA - eng
KW - mixed graph; Laplacian eigenvalue; degree
UR - http://eudml.org/doc/270233
ER -
References
top- [1] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra 46 (1999) 299-312, doi: 10.1080/03081089908818623. Zbl0940.05042
- [2] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Edge version of the matrix tree theorem for trees, Linear and Multilinear Algebra 47 (2000) 217-229, doi: 10.1080/03081080008818646. Zbl0960.05067
- [3] Y.-Z. Fan, Largest eigenvalue of a unicyclic mixed graph, Applied Mathematics A Journal of Chinese Universities (English Series) 19 (2004) 140-148. Zbl1059.05072
- [4] Y.-Z. Fan, On the least eigenvalue of a unicyclic mixed graph, Linear and Multilinear Algebra 53 (2005) 97-113, doi: 10.1080/03081080410001681540. Zbl1062.05090
- [5] Y.-Z. Fan, On spectral integral variations of mixed graphs, Linear Algebra Appl. 374 (2003) 307-316, doi: 10.1016/S0024-3795(03)00575-5. Zbl1026.05076
- [6] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305.
- [7] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975) 619-633. Zbl0437.15004
- [8] R. Grone and R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math. 7 (1994) 221-229, doi: 10.1137/S0895480191222653. Zbl0795.05092
- [9] J.-M. Guo and S.-W. Tan, A relation between the matching number and the Laplacian spectrum of a graph, Linear Algebra Appl. 325 (2001) 71-74, doi: 10.1016/S0024-3795(00)00333-5.
- [10] R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge Univ. Press, Cambridge, 1985). Zbl0576.15001
- [11] Y.-P. Hou, J.-S. Li and Y.-L. Pan, On the Laplacian eigenvalues of signed graphs, Linear and Multilinear Algebra 51 (2003) 21-30, doi: 10.1080/0308108031000053611.
- [12] J.-S. Li and Y.-L. Pan, A note on the second largest eigenvalue of the Laplacian matrix of a graph, Linear and Multilinear Algebra 48 (2000) 117-121, doi: 10.1080/03081080008818663. Zbl0979.15016
- [13] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197/198 (1998) 143-176, doi: 10.1016/0024-3795(94)90486-3. Zbl0802.05053
- [14] B. Mohar, Some applications of Laplacian eigenvalues of graphs, in: Graph Symmetry, G. Hahn and G. Sabidussi, eds (Kluwer Academic Publishers, Dordrecht, 1997) 225-275. Zbl0883.05096
- [15] X.-D. Zhang and J.-S. Li, The Laplacian spectrum of a mixed graph, Linear Algebra Appl. 353 (2002) 11-20, doi: 10.1016/S0024-3795(01)00538-9. Zbl1003.05073
- [16] X.-D. Zhang and R. Luo, The Laplacian eigenvalues of a mixed graph, Linear Algebra Appl. 353 (2003) 109-119, doi: 10.1016/S0024-3795(02)00509-8. Zbl1017.05078
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.