# Some remarks on α-domination

Franz Dahme; Dieter Rautenbach; Lutz Volkmann

Discussiones Mathematicae Graph Theory (2004)

- Volume: 24, Issue: 3, page 423-430
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topFranz Dahme, Dieter Rautenbach, and Lutz Volkmann. "Some remarks on α-domination." Discussiones Mathematicae Graph Theory 24.3 (2004): 423-430. <http://eudml.org/doc/270246>.

@article{FranzDahme2004,

abstract = {Let α ∈ (0,1) and let $G = (V_G,E_G$) be a graph. According to Dunbar, Hoffman, Laskar and Markus [3] a set $D ⊆ V_G$ is called an α-dominating set of G, if $|N_G(u) ∩ D| ≥ αd_G(u)$ for all $u ∈ V_G∖D$. We prove a series of upper bounds on the α-domination number of a graph G defined as the minimum cardinality of an α-dominating set of G.},

author = {Franz Dahme, Dieter Rautenbach, Lutz Volkmann},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {α-domination; domination},

language = {eng},

number = {3},

pages = {423-430},

title = {Some remarks on α-domination},

url = {http://eudml.org/doc/270246},

volume = {24},

year = {2004},

}

TY - JOUR

AU - Franz Dahme

AU - Dieter Rautenbach

AU - Lutz Volkmann

TI - Some remarks on α-domination

JO - Discussiones Mathematicae Graph Theory

PY - 2004

VL - 24

IS - 3

SP - 423

EP - 430

AB - Let α ∈ (0,1) and let $G = (V_G,E_G$) be a graph. According to Dunbar, Hoffman, Laskar and Markus [3] a set $D ⊆ V_G$ is called an α-dominating set of G, if $|N_G(u) ∩ D| ≥ αd_G(u)$ for all $u ∈ V_G∖D$. We prove a series of upper bounds on the α-domination number of a graph G defined as the minimum cardinality of an α-dominating set of G.

LA - eng

KW - α-domination; domination

UR - http://eudml.org/doc/270246

ER -

## References

top- [1] N. Alon and J. Spencer, The probabilistic method, 2nd ed., (Wiley-Interscience Series in Discrete Math. and Optimization, 2000), doi: 10.1002/0471722154. Zbl0996.05001
- [2] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Stat. 23(1952) 493-507, doi: 10.1214/aoms/1177729330. Zbl0048.11804
- [3] J.E. Dunbar, D.G. Hoffman, R.C. Laskar and L.R. Markus, α-domination, Discrete Math. 211 (2000) 11-26, doi: 10.1016/S0012-365X(99)00131-4.
- [4] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293, doi: 10.1007/BF01848079. Zbl0602.05043
- [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs (Marcel Dekker, New York, 1998). Zbl0890.05002
- [6] F. Dahme, D. Rautenbach and L. Volkmann, α-domination perfect trees, manuscript (2002).
- [7] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 38 (Amer. Math. Soc., Providence, RI, 1962).
- [8] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23-32, doi: 10.1002/jgt.3190060104. Zbl0489.05049
- [9] D.R. Woodall, Improper colourings of graphs, Pitman Res. Notes Math. Ser. 218 (1988) 45-63.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.