An energy estimate for the complex Monge-Ampère operator

Urban Cegrell; Leif Persson

Annales Polonici Mathematici (1997)

  • Volume: 67, Issue: 1, page 95-102
  • ISSN: 0066-2216

Abstract

top
We prove an energy estimate for the complex Monge-Ampère operator, and a comparison theorem for the corresponding capacity and energy. The results are pluricomplex counterparts to results in classical potential theory.

How to cite

top

Urban Cegrell, and Leif Persson. "An energy estimate for the complex Monge-Ampère operator." Annales Polonici Mathematici 67.1 (1997): 95-102. <http://eudml.org/doc/270248>.

@article{UrbanCegrell1997,
abstract = {We prove an energy estimate for the complex Monge-Ampère operator, and a comparison theorem for the corresponding capacity and energy. The results are pluricomplex counterparts to results in classical potential theory.},
author = {Urban Cegrell, Leif Persson},
journal = {Annales Polonici Mathematici},
keywords = {capacity; complex Monge-Ampère operator; energy estimate; plurisubharmonic function; comparison theorem},
language = {eng},
number = {1},
pages = {95-102},
title = {An energy estimate for the complex Monge-Ampère operator},
url = {http://eudml.org/doc/270248},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Urban Cegrell
AU - Leif Persson
TI - An energy estimate for the complex Monge-Ampère operator
JO - Annales Polonici Mathematici
PY - 1997
VL - 67
IS - 1
SP - 95
EP - 102
AB - We prove an energy estimate for the complex Monge-Ampère operator, and a comparison theorem for the corresponding capacity and energy. The results are pluricomplex counterparts to results in classical potential theory.
LA - eng
KW - capacity; complex Monge-Ampère operator; energy estimate; plurisubharmonic function; comparison theorem
UR - http://eudml.org/doc/270248
ER -

References

top
  1. [1] E. Bedford, Survey of pluri-potential theory, in: Several Complex Variables, Proc. Mittag-Leffler Institute, 1987-88, J. E. Fornaess (ed.), Math. Notes 38, Princeton Univ. Press, 1993, 48-97. 
  2. [2] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40. Zbl0547.32012
  3. [3] L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, Princeton, N.J., 1967. 
  4. [4] U. Cegrell, The symmetric pluricomplex Green function, in: Banach Center Publ. 31, Inst. Math., Polish Acad. Sci., Warszawa, 1995, 135-141. Zbl0831.31008
  5. [5] U. Cegrell, Pluricomplex energy, Acta Math., to appear. Zbl40.0098.04
  6. [6] N. S. Landkof, Foundations of Modern Potential Theory, Springer, 1972. 
  7. [7] L. Persson, A Dirichlet principle for the complex Monge-Ampère operator, Research Report No. 8, 1997, Dept. Math., Umeå University. Zbl1045.34056

NotesEmbed ?

top

You must be logged in to post comments.