Existence results for q-difference inclusions with three-point boundary conditions involving different numbers of q

Sotiris K. Ntouyas; Thanin Sitthiwirattham; Jessada Tariboon

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2014)

  • Volume: 34, Issue: 1, page 41-59
  • ISSN: 1509-9407

Abstract

top
In this paper, we study a new class of three-point boundary value problems of nonlinear second-order q-difference inclusions. Our problems contain different numbers of q in derivatives and integrals. By using fixed point theorems, some new existence results are obtained in the cases when the right-hand side has convex as well as noncovex values.

How to cite

top

Sotiris K. Ntouyas, Thanin Sitthiwirattham, and Jessada Tariboon. "Existence results for q-difference inclusions with three-point boundary conditions involving different numbers of q." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 34.1 (2014): 41-59. <http://eudml.org/doc/270254>.

@article{SotirisK2014,
abstract = {In this paper, we study a new class of three-point boundary value problems of nonlinear second-order q-difference inclusions. Our problems contain different numbers of q in derivatives and integrals. By using fixed point theorems, some new existence results are obtained in the cases when the right-hand side has convex as well as noncovex values.},
author = {Sotiris K. Ntouyas, Thanin Sitthiwirattham, Jessada Tariboon},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {q-difference inclusions; nonlocal boundary conditions; fixed point theorems; -difference inclusions},
language = {eng},
number = {1},
pages = {41-59},
title = {Existence results for q-difference inclusions with three-point boundary conditions involving different numbers of q},
url = {http://eudml.org/doc/270254},
volume = {34},
year = {2014},
}

TY - JOUR
AU - Sotiris K. Ntouyas
AU - Thanin Sitthiwirattham
AU - Jessada Tariboon
TI - Existence results for q-difference inclusions with three-point boundary conditions involving different numbers of q
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2014
VL - 34
IS - 1
SP - 41
EP - 59
AB - In this paper, we study a new class of three-point boundary value problems of nonlinear second-order q-difference inclusions. Our problems contain different numbers of q in derivatives and integrals. By using fixed point theorems, some new existence results are obtained in the cases when the right-hand side has convex as well as noncovex values.
LA - eng
KW - q-difference inclusions; nonlocal boundary conditions; fixed point theorems; -difference inclusions
UR - http://eudml.org/doc/270254
ER -

References

top
  1. [1] C.R. Adams, On the linear ordinary q-difference equation, Annals Math. 30 (1928) 195-205. doi: 10.2307/1968274 Zbl55.0263.01
  2. [2] B. Ahmad, Boundary value problems for nonlinear third-order q-difference equations, Electron. J. Diff. Equ. 2011 (94) (2011) 1-7. doi: 10.1155/2011/107384 Zbl1226.39003
  3. [3] B. Ahmad and S.K. Ntouyas, Boundary value problems for q-difference inclusions, Abstr. Appl. Anal. 2011 Article ID 292860, 15 pages. Zbl1216.39012
  4. [4] B. Ahmad, A. Alsaedi and S.K. Ntouyas, A study of second-order q-difference equations with boundary conditions, Adv. Difference Equ. 2012 (2012) 35. doi: 10.1186/1687-1847-2012-35 Zbl1302.39002
  5. [5] B. Ahmad and J.J. Nieto, Basic theory of nonlinear third-order q-difference equations and inclusions, Math. Model. Anal. 18 (1) (2013) 122-135. doi: 10.3846/13926292.2013.760012 Zbl1264.34027
  6. [6] M.H. Annaby and Z.S. Mansour, q-Taylor and interpolation series for Jackson q-difference operators, J. Math. Anal. Appl. 344 (2008) 472-483. doi: 10.1016/j.jmaa.2008.02.033 Zbl1149.40001
  7. [7] G. Bangerezako, Variational q-calculus, J. Math. Anal. Appl. 289 (2004) 650-665. doi: 10.1016/j.jmaa.2003.09.004 
  8. [8] H.F. Bohnenblust and S. Karlin, On a theorem of Ville, in: Contributions to the Theory of Games. Vol. I, pp. 155-160 (Princeton Univ. Press, 1950). Zbl0041.25701
  9. [9] R.D. Carmichael, The general theory of linear q-difference equations, American J. Math. 34 (1912) 147-168. doi: 10.2307/2369887 Zbl43.0411.02
  10. [10] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580 (Springer-Verlag, Berlin-Heidelberg-New York, 1977). doi: 10.1007/BFb0087685 
  11. [11] H. Covitz and S.B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970) 5-11. doi: 10.1007/BF02771543 Zbl0192.59802
  12. [12] K. Deimling, Multivalued Differential Equations (Walter De Gruyter, Berlin-New York, 1992). doi: 10.1515/9783110874228 Zbl0760.34002
  13. [13] A. Dobrogowska and A. Odzijewicz, Second order q-difference equations solvable by factorization method, J. Comput. Appl. Math. 193 (2006) 319-346. doi: 10.1016/j.cam.2005.06.009 Zbl1119.39017
  14. [14] T. Ernst, The history of q-calculus and a new method, UUDM Report 2000:16, Department of Mathematics, Uppsala University, 2000, ISSN:1101-3591. 
  15. [15] M. El-Shahed and H.A. Hassan, Positive solutions of q-difference equation, Proc. Amer. Math. Soc. 138 (2010) 1733-1738. doi: 10.1090/S0002-9939-09-10185-5 Zbl1201.39003
  16. [16] R. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems, E.J. Qualitative Theory Diff. Equ. 70 (2010) 1-10. Zbl1207.39010
  17. [17] G. Gasper and M. Rahman, Basic Hypergeometric Series (Cambridge University Press, Cambridge, 1990). Zbl0695.33001
  18. [18] G. Gasper and M. Rahman, Some systems of multivariable orthogonal q-Racah polynomials, Ramanujan J. 13 (2007) 389-405. doi: 10.1007/s11139-006-0259-8 Zbl1121.33019
  19. [19] A. Granas and J. Dugundji, Fixed Point Theory (Springer-Verlag, New York, 2005). Zbl1025.47002
  20. [20] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Theory I (Kluwer, Dordrecht, 1997). doi: 10.1007/978-1-4615-6359-4 
  21. [21] M.E.H. Ismail and P. Simeonov, q-difference operators for orthogonal polynomials, J. Computat. Appl. Math. 233 (2009) 749-761. doi: 10.1016/j.cam.2009.02.044 Zbl1185.39005
  22. [22] F.H. Jackson, On q-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh 46 (1908) 253-281. doi: 10.1017/S0080456800002751 
  23. [23] F.H. Jackson, On q-difference equations, American J. Math. 32 (1910) 305-314. doi: 10.2307/2370183 Zbl41.0502.01
  24. [24] V. Kac and P. Cheung, Quantum Calculus (Springer, New York, 2002). doi: 10.1007/978-1-4613-0071-7 Zbl0986.05001
  25. [25] M. Kisielewicz, Differential Inclusions and Optimal Control (Kluwer, Dordrecht, The Netherlands, 1991). 
  26. [26] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965) 781-786. Zbl0151.10703
  27. [27] J. Ma and J. Yang, Existence of solutions for multi-point boundary value problem of fractional q-difference equation, E.J. Qualitative Theory Diff. Equ. 92 (2011) 1-10. Zbl06528096
  28. [28] T.E. Mason, On properties of the solutions of linear q-difference equations with entire function coefficients, American J. Math. 37 (1915) 439-444. doi: 10.2307/2370216 Zbl45.0509.01
  29. [29] T. Sitthiwirattham, J. Tariboon and S.K. Ntouyas, Three-point boundary value problems of nonlinear second-order q-difference equations involving different numbers of q, J. Appl. Math. 2013, Article ID 763786, 12 pages. Zbl1327.39006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.