2-factors in claw-free graphs
Guantao Chen; Jill R. Faudree; Ronald J. Gould; Akira Saito
Discussiones Mathematicae Graph Theory (2000)
- Volume: 20, Issue: 2, page 165-172
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J.A. Bondy, Pancyclic Graphs I, J. Combin. Theory (B) 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.
- [2] S. Brandt, G. Chen, R.J. Faudree, R.J. Gould and L. Lesniak, On the Number of Cycles in a 2-Factor, J. Graph Theory, 24 (1997) 165-173, doi: 10.1002/(SICI)1097-0118(199702)24:2<165::AID-JGT4>3.3.CO;2-A
- [3] G. Chartrand and L. Lesniak, Graphs & Digraphs (Chapman and Hall, London, 3rd edition, 1996).
- [4] R.J. Gould, Updating the Hamiltonian Problem - A Survey, J. Graph Theory 15 (1991) 121-157, doi: 10.1002/jgt.3190150204. Zbl0746.05039
- [5] M.M. Matthews and D.P. Sumner, Longest Paths and Cycles in -Free Graphs, J. Graph Theory 9 (1985) 269-277, doi: 10.1002/jgt.3190090208. Zbl0591.05041
- [6] O. Ore, Hamiltonian Connected Graphs, J. Math. Pures. Appl. 42 (1963) 21-27.
- [7] H. Li and C. Virlouvet, Neighborhood Conditions for Claw-free Hamiltonian Graphs, Ars Combinatoria 29 (A) (1990) 109-116. Zbl0709.05022