On the local Cauchy problem for nonlinear hyperbolic functional differential equations
Annales Polonici Mathematici (1997)
- Volume: 67, Issue: 3, page 215-232
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topTomasz Człapiński. "On the local Cauchy problem for nonlinear hyperbolic functional differential equations." Annales Polonici Mathematici 67.3 (1997): 215-232. <http://eudml.org/doc/270287>.
@article{TomaszCzłapiński1997,
abstract = {We consider the local initial value problem for the hyperbolic partial functional differential equation of the first order
(1) $Dₓz(x,y) = f(x,y,z(x,y),(Wz)(x,y),D_y z(x,y))$ on E,
(2) z(x,y) = ϕ(x,y) on [-τ₀,0]×[-b,b],
where E is the Haar pyramid and τ₀ ∈ ℝ₊, b = (b₁,...,bₙ) ∈ ℝⁿ₊. Using the method of bicharacteristics and the method of successive approximations for a certain functional integral system we prove, under suitable assumptions, a theorem on the local existence of weak solutions of the problem (1),(2).},
author = {Tomasz Człapiński},
journal = {Annales Polonici Mathematici},
keywords = {functional differential equations; weak solutions; bicharacteristics; successive approximations; method of bicharacteristics; local existence of weak solutions},
language = {eng},
number = {3},
pages = {215-232},
title = {On the local Cauchy problem for nonlinear hyperbolic functional differential equations},
url = {http://eudml.org/doc/270287},
volume = {67},
year = {1997},
}
TY - JOUR
AU - Tomasz Człapiński
TI - On the local Cauchy problem for nonlinear hyperbolic functional differential equations
JO - Annales Polonici Mathematici
PY - 1997
VL - 67
IS - 3
SP - 215
EP - 232
AB - We consider the local initial value problem for the hyperbolic partial functional differential equation of the first order
(1) $Dₓz(x,y) = f(x,y,z(x,y),(Wz)(x,y),D_y z(x,y))$ on E,
(2) z(x,y) = ϕ(x,y) on [-τ₀,0]×[-b,b],
where E is the Haar pyramid and τ₀ ∈ ℝ₊, b = (b₁,...,bₙ) ∈ ℝⁿ₊. Using the method of bicharacteristics and the method of successive approximations for a certain functional integral system we prove, under suitable assumptions, a theorem on the local existence of weak solutions of the problem (1),(2).
LA - eng
KW - functional differential equations; weak solutions; bicharacteristics; successive approximations; method of bicharacteristics; local existence of weak solutions
UR - http://eudml.org/doc/270287
ER -
References
top- [1] P. Bassanini, On a recent proof concerning a boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form, Boll. Un. Mat. Ital. A (5) 14 (1977), 325-332. Zbl0355.35059
- [2] P. Bassanini, Iterative methods for quasilinear hyperbolic systems, Boll. Un. Mat. Ital. B (6) 1 (1982), 225-250. Zbl0488.35056
- [3] P. Bassanini and J. Turo, Generalized solutions of free boundary problems for hyperbolic systems of functional partial differential equations, Ann. Mat. Pura Appl. 156 (1990), 211-230. Zbl0716.35088
- [4] P. Brandi and R. Ceppitelli, On the existence of solutions of a nonlinear functional partial differential equation of the first order, Atti Sem. Mat. Fis. Univ. Modena 29 (1980), 166-186. Zbl0476.35073
- [5] P. Brandi and R. Ceppitelli, Existence, uniqueness and continuous dependence for a hereditary nonlinear functional partial differential equations, Ann. Polon. Math. 47 (1986), 121-136. Zbl0657.35124
- [6] P. Brandi, Z. Kamont and A. Salvadori, Existence of weak solutions for partial differential-functional equations, to appear. Zbl0737.35134
- [7] M. G. Cazzani-Nieri, Un problema ai limiti per sistemi integrodifferenziali non lineari di tipo iperbolico, Ann. Mat. Pura Appl. 157 (1994), 351-387.
- [8] L. Cesari, A boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form, Ann. Scuola Norm. Sup. Pisa (4) 1 (1974), 311-358. Zbl0307.35063
- [9] L. Cesari, A boundary value problem for quasilinear hyperbolic systems, Riv. Mat. Univ. Parma 3 (1974), 107-131. Zbl0342.35036
- [10] M. Cinquini Cibrario, Nuove ricerche sui sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti, Rend. Sem. Mat. Fis. Univ. Milano 52 (1982), 531-550. Zbl0599.35028
- [11] M. Cinquini Cibrario, Teoremi di esistenza per sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti, Rend. Ist. Lombardo 104 (1970), 795-829. Zbl0215.16202
- [12] M. Cinquini Cibrario, Sopra una classe di sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti, Ann. Mat. Pura Appl. 140 (1985), 223-253.
- [13] T. Człapiński, On the existence of generalized solutions of nonlinear first order partial differential-functional equations in two independent variables, Czechoslovak Math. J. 41 (1991), 490-506. Zbl0797.35159
- [14] T. Człapiński, On the Cauchy problem for quasilinear hyperbolic systems of partial differential-functional equations of the first order, Z. Anal. Anwendungen 10 (1991), 169-182. Zbl0763.35055
- [15] D. Jaruszewska-Walczak, Existence of solutions of first order partial differential-functional equations, Boll. Un. Mat. Ital. B (7) 4 (1990), 57-82. Zbl0705.35147
- [16] Z. Kamont and S. Zacharek, On the existence of weak solutions of nonlinear first order partial differential equations in two independent variables, Boll. Un. Mat. Ital. B (6) 5 (1986), 851-879. Zbl0629.35110
- [17] T. Kiguradze, Some boundary value problems for systems of linear partial differential equations of hyperbolic type, Mem. Differential Equations Math. Phys. 1 (1994), 1-144. Zbl0819.35003
- [18] A. D. Myshkis and A. S. Slopak, A mixed problem for systems of differential-functional equations with partial derivatives and with operators of Volterra type, Mat. Sb. 41 (1957), 239-256 (in Russian).
- [19] O. A. Oleĭnik, Discontinuous solutions of nonlinear differential equations, Uspekhi Mat. Nauk 12 (3) (1957), 3-73 (in Russian).
- [20] A. Salvadori, Sul problema di Cauchy per una struttura ereditaria di tipo iperbolico. Esistenza, unicità e dipendenza continua, Atti Sem. Mat. Fis. Univ. Modena 32 (1983), 329-356.
- [21] J. Szarski, Characteristics and Cauchy problems for nonlinear partial differential functional equations of first order, Univ. Kansas, Lawrence, Kan., 1959.
- [22] J. Turo, On some class of quasilinear hyperbolic systems of partial differential-functional equations of the first order, Czechoslovak Math. J. 36 (1986), 185-197. Zbl0612.35082
- [23] T. Ważewski, Sur l'appréciation du domaine d'existence des intégrales de l'équation aux dérivées partielles du premier ordre, Ann. Soc. Polon. Math. 14 (1935), 149-177. Zbl62.1283.03
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.