Improved upper bounds for nearly antipodal chromatic number of paths
Yu-Fa Shen; Guo-Ping Zheng; Wen-Jie HeK
Discussiones Mathematicae Graph Theory (2007)
- Volume: 27, Issue: 1, page 159-174
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topYu-Fa Shen, Guo-Ping Zheng, and Wen-Jie HeK. "Improved upper bounds for nearly antipodal chromatic number of paths." Discussiones Mathematicae Graph Theory 27.1 (2007): 159-174. <http://eudml.org/doc/270297>.
@article{Yu2007,
abstract = {For paths Pₙ, G. Chartrand, L. Nebeský and P. Zhang showed that $ac^\{\prime \}(Pₙ) ≤ \binom\{n-2\}\{2\} + 2$ for every positive integer n, where ac’(Pₙ) denotes the nearly antipodal chromatic number of Pₙ. In this paper we show that $ac^\{\prime \}(Pₙ) ≤ \binom\{n-2\}\{2\} - n/2 - ⎣10/n⎦ + 7$ if n is even positive integer and n ≥ 10, and $ac^\{\prime \}(Pₙ) ≤ \binom\{n-2\}\{2\} - (n-1)/2 - ⎣13/n⎦ + 8$ if n is odd positive integer and n ≥ 13. For all even positive integers n ≥ 10 and all odd positive integers n ≥ 13, these results improve the upper bounds for nearly antipodal chromatic number of Pₙ.},
author = {Yu-Fa Shen, Guo-Ping Zheng, Wen-Jie HeK},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {radio colorings; nearly antipodal chromatic number; paths; bounds},
language = {eng},
number = {1},
pages = {159-174},
title = {Improved upper bounds for nearly antipodal chromatic number of paths},
url = {http://eudml.org/doc/270297},
volume = {27},
year = {2007},
}
TY - JOUR
AU - Yu-Fa Shen
AU - Guo-Ping Zheng
AU - Wen-Jie HeK
TI - Improved upper bounds for nearly antipodal chromatic number of paths
JO - Discussiones Mathematicae Graph Theory
PY - 2007
VL - 27
IS - 1
SP - 159
EP - 174
AB - For paths Pₙ, G. Chartrand, L. Nebeský and P. Zhang showed that $ac^{\prime }(Pₙ) ≤ \binom{n-2}{2} + 2$ for every positive integer n, where ac’(Pₙ) denotes the nearly antipodal chromatic number of Pₙ. In this paper we show that $ac^{\prime }(Pₙ) ≤ \binom{n-2}{2} - n/2 - ⎣10/n⎦ + 7$ if n is even positive integer and n ≥ 10, and $ac^{\prime }(Pₙ) ≤ \binom{n-2}{2} - (n-1)/2 - ⎣13/n⎦ + 8$ if n is odd positive integer and n ≥ 13. For all even positive integers n ≥ 10 and all odd positive integers n ≥ 13, these results improve the upper bounds for nearly antipodal chromatic number of Pₙ.
LA - eng
KW - radio colorings; nearly antipodal chromatic number; paths; bounds
UR - http://eudml.org/doc/270297
ER -
References
top- [1] G. Chartrand, D. Erwin, F. Harary and P. Zhang, Radio labelings of graphs, Bull. Inst. Combin. Appl. 33 (2001) 77-85. Zbl0989.05102
- [2] G. Chartrand, D. Erwin and P. Zhang, A graph labeling problem suggested by FM channel restrictions, Bull. Inst. Combin. Appl. 43 (2005) 43-57. Zbl1066.05125
- [3] G. Chartrand, D. Erwin and P. Zhang, Radio antipodal colorings of graphs, Math. Bohem. 127 (2002) 57-69. Zbl0995.05056
- [4] G. Chartrand, L. Nebeský and P. Zhang, Radio k-colorings of paths, Discuss. Math. Graph Theory 24 (2004) 5-21, doi: 10.7151/dmgt.1209. Zbl1056.05053
- [5] D. Fotakis, G. Pantziou, G. Pentaris and P. Spirakis, Frequency assignment in mobile and radio networks, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 45 (1999) 73-90. Zbl0929.68005
- [6] R. Khennoufa and O. Togni, A note on radio antipodal colorings of paths, Math. Bohem. 130 (2005) 277-282. Zbl1110.05033
- [7] J. Van den Heuvel, R.A. Leese and M.A. Shepherd, Graph labeling and radio channel assignment, J. Graph Theory 29 (1998) 263-283, doi: 10.1002/(SICI)1097-0118(199812)29:4<263::AID-JGT5>3.0.CO;2-V Zbl0930.05087
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.