# Cycles through specified vertices in triangle-free graphs

Daniel Paulusma; Kiyoshi Yoshimoto

Discussiones Mathematicae Graph Theory (2007)

- Volume: 27, Issue: 1, page 179-191
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topDaniel Paulusma, and Kiyoshi Yoshimoto. "Cycles through specified vertices in triangle-free graphs." Discussiones Mathematicae Graph Theory 27.1 (2007): 179-191. <http://eudml.org/doc/270311>.

@article{DanielPaulusma2007,

abstract = {Let G be a triangle-free graph with δ(G) ≥ 2 and σ₄(G) ≥ |V(G)| + 2. Let S ⊂ V(G) consist of less than σ₄/4+ 1 vertices. We prove the following. If all vertices of S have degree at least three, then there exists a cycle C containing S. Both the upper bound on |S| and the lower bound on σ₄ are best possible.},

author = {Daniel Paulusma, Kiyoshi Yoshimoto},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {cycle; path; triangle-free graph},

language = {eng},

number = {1},

pages = {179-191},

title = {Cycles through specified vertices in triangle-free graphs},

url = {http://eudml.org/doc/270311},

volume = {27},

year = {2007},

}

TY - JOUR

AU - Daniel Paulusma

AU - Kiyoshi Yoshimoto

TI - Cycles through specified vertices in triangle-free graphs

JO - Discussiones Mathematicae Graph Theory

PY - 2007

VL - 27

IS - 1

SP - 179

EP - 191

AB - Let G be a triangle-free graph with δ(G) ≥ 2 and σ₄(G) ≥ |V(G)| + 2. Let S ⊂ V(G) consist of less than σ₄/4+ 1 vertices. We prove the following. If all vertices of S have degree at least three, then there exists a cycle C containing S. Both the upper bound on |S| and the lower bound on σ₄ are best possible.

LA - eng

KW - cycle; path; triangle-free graph

UR - http://eudml.org/doc/270311

ER -

## References

top- [1] P. Ash and B. Jackson, Dominating cycles in bipartite graphs, in: Progress in Graph Theory, J.A. Bondy, U.S.R. Murty, eds., (Academic Press, 1984), 81-87. Zbl0562.05032
- [2] B. Bollobás and G. Brightwell, Cycles through specified vertices, Combinatorica 13 (1993) 137-155. Zbl0780.05033
- [3] J.A. Bondy, Longest Paths and Cycles in Graphs of High Degree, Research Report CORR 80-16 (1980).
- [4] J.A. Bondy and L. Lovász, Cycles through specified vertices of a graph, Combinatorica 1 (1981) 117-140, doi: 10.1007/BF02579268. Zbl0492.05049
- [5] H. Broersma, H. Li, J. Li, F. Tian and H.J. Veldman, Cycles through subsets with large degree sums, Discrete Math. 171 (1997) 43-54, doi: 10.1016/S0012-365X(96)00071-4. Zbl0883.05089
- [6] R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173, Springer (2000).
- [7] Y. Egawa, R. Glas and S.C. Locke, Cycles and paths trough specified vertices in k-connected graphs, J. Combin. Theory (B) 52 (1991) 20-29, doi: 10.1016/0095-8956(91)90086-Y. Zbl0666.05044
- [8] J. Harant, On paths and cycles through specified vertices, Discrete Math. 286 (2004) 95-98, doi: 10.1016/j.disc.2003.11.059. Zbl1048.05050
- [9] H. Enomoto, J. van den Heuvel, A. Kaneko and A. Saito, Relative length of long paths and cycles in graphs with large degree sums, J. Graph Theory 20 (1995) 213-225, doi: 10.1002/jgt.3190200210. Zbl0841.05057
- [10] D.A. Holton, Cycles through specified vertices in k-connected regular graphs, Ars Combin. 13 (1982) 129-143. Zbl0497.05036
- [11] O. Ore, Note on hamiltonian circuits, American Mathematical Monthly 67 (1960) 55, doi: 10.2307/2308928. Zbl0089.39505
- [12] K. Ota, Cycles through prescribed vertices with large degree sum, Discrete Math. 145 (1995) 201-210, doi: 10.1016/0012-365X(94)00036-I. Zbl0838.05071
- [13] D. Paulusma and K. Yoshimoto, Relative length of longest paths and longest cycles in triangle-free graphs, submitted, http://www.math.cst.nihon-u.ac.jp/yosimoto/paper/related_length1_sub.pdf. Zbl1134.05042
- [14] A. Saito, Long cycles through specified vertices in a graph, J. Combin. Theory (B) 47 (1989) 220-230, doi: 10.1016/0095-8956(89)90021-X. Zbl0686.05031
- [15] L. Stacho, Cycles through specified vertices in 1-tough graphs, Ars Combin. 56 (2000) 263-269. Zbl0994.05081
- [16] K. Yoshimoto, Edge degree conditions and all longest cycles which are dominating, submitted.
- [17] S.J. Zheng, Cycles and paths through specified vertices, Journal of Nanjing Normal University, Natural Science Edition, Nanjing Shida Xuebao, Ziran Kexue Ban 23 (2000) 9-13. Zbl0985.05031

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.