Some totally 4-choosable multigraphs

Douglas R. Woodall

Discussiones Mathematicae Graph Theory (2007)

  • Volume: 27, Issue: 3, page 425-455
  • ISSN: 2083-5892

Abstract

top
It is proved that if G is multigraph with maximum degree 3, and every submultigraph of G has average degree at most 2(1/2) and is different from one forbidden configuration C⁺₄ with average degree exactly 2(1/2), then G is totally 4-choosable; that is, if every element (vertex or edge) of G is assigned a list of 4 colours, then every element can be coloured with a colour from its own list in such a way that no two adjacent or incident elements are coloured with the same colour. This shows that the List-Total-Colouring Conjecture, that ch''(G) = χ''(G) for every multigraph G, is true for all multigraphs of this type. As a consequence, if G is a graph with maximum degree 3 and girth at least 10 that can be embedded in the plane, projective plane, torus or Klein bottle, then ch''(G) = χ''(G) = 4. Some further total choosability results are discussed for planar graphs with sufficiently large maximum degree and girth.

How to cite

top

Douglas R. Woodall. "Some totally 4-choosable multigraphs." Discussiones Mathematicae Graph Theory 27.3 (2007): 425-455. <http://eudml.org/doc/270317>.

@article{DouglasR2007,
abstract = {It is proved that if G is multigraph with maximum degree 3, and every submultigraph of G has average degree at most 2(1/2) and is different from one forbidden configuration C⁺₄ with average degree exactly 2(1/2), then G is totally 4-choosable; that is, if every element (vertex or edge) of G is assigned a list of 4 colours, then every element can be coloured with a colour from its own list in such a way that no two adjacent or incident elements are coloured with the same colour. This shows that the List-Total-Colouring Conjecture, that ch''(G) = χ''(G) for every multigraph G, is true for all multigraphs of this type. As a consequence, if G is a graph with maximum degree 3 and girth at least 10 that can be embedded in the plane, projective plane, torus or Klein bottle, then ch''(G) = χ''(G) = 4. Some further total choosability results are discussed for planar graphs with sufficiently large maximum degree and girth.},
author = {Douglas R. Woodall},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {maximum average degree; planar graph; total choosability; list total colouring},
language = {eng},
number = {3},
pages = {425-455},
title = {Some totally 4-choosable multigraphs},
url = {http://eudml.org/doc/270317},
volume = {27},
year = {2007},
}

TY - JOUR
AU - Douglas R. Woodall
TI - Some totally 4-choosable multigraphs
JO - Discussiones Mathematicae Graph Theory
PY - 2007
VL - 27
IS - 3
SP - 425
EP - 455
AB - It is proved that if G is multigraph with maximum degree 3, and every submultigraph of G has average degree at most 2(1/2) and is different from one forbidden configuration C⁺₄ with average degree exactly 2(1/2), then G is totally 4-choosable; that is, if every element (vertex or edge) of G is assigned a list of 4 colours, then every element can be coloured with a colour from its own list in such a way that no two adjacent or incident elements are coloured with the same colour. This shows that the List-Total-Colouring Conjecture, that ch''(G) = χ''(G) for every multigraph G, is true for all multigraphs of this type. As a consequence, if G is a graph with maximum degree 3 and girth at least 10 that can be embedded in the plane, projective plane, torus or Klein bottle, then ch''(G) = χ''(G) = 4. Some further total choosability results are discussed for planar graphs with sufficiently large maximum degree and girth.
LA - eng
KW - maximum average degree; planar graph; total choosability; list total colouring
UR - http://eudml.org/doc/270317
ER -

References

top
  1. [1] N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992) 125-134, doi: 10.1007/BF01204715. Zbl0756.05049
  2. [2] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory (B) 71 (1997) 184-204, doi: 10.1006/jctb.1997.1780. Zbl0876.05032
  3. [3] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colourings of planar graphs with large girth, European J. Combin. 19 (1998) 19-24, doi: 10.1006/eujc.1997.0152. Zbl0886.05065
  4. [4] A. Chetwynd, Total colourings of graphs, in: R. Nelson and R.J. Wilson, eds, Graph Colourings (Milton Keynes, 1988), Pitman Res. Notes Math. Ser. 218 (Longman Sci. Tech., Harlow, 1990) 65-77. 
  5. [5] P. Erdös, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, 1979, Congr. Numer. 26 (1980) 125-157. 
  6. [6] M. Juvan, B. Mohar and R. Skrekovski, List total colourings of graphs, Combin. Probab. Comput. 7 (1998) 181-188, doi: 10.1017/S0963548397003210. Zbl0911.05033
  7. [7] L. Lovász, Three short proofs in graph theory, J. Combin. Theory (B) 19 (1975) 269-271, doi: 10.1016/0095-8956(75)90089-1. Zbl0322.05142
  8. [8] V.G. Vizing, Colouring the vertices of a graph in prescribed colours (in Russian), Metody Diskret. Analiz. 29 (1976) 3-10. 
  9. [9] W. Wang, Total chromatic number of planar graphs with maximum degree 10, J. Graph Theory 54 (2007) 91-102, doi: 10.1002/jgt.20195. Zbl1110.05037
  10. [10] D.R. Woodall, List colourings of graphs, in: J.W.P. Hirschfeld, ed., Surveys in Combinatorics, 2001, London Math. Soc. Lecture Note Ser. 288 (Cambridge Univ. Press, Cambridge, 2001) 269-301. Zbl0979.05047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.