# Equivalent classes for K₃-gluings of wheels

Discussiones Mathematicae Graph Theory (1998)

- Volume: 18, Issue: 1, page 73-84
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topHalina Bielak. "Equivalent classes for K₃-gluings of wheels." Discussiones Mathematicae Graph Theory 18.1 (1998): 73-84. <http://eudml.org/doc/270318>.

@article{HalinaBielak1998,

abstract = {In this paper, the chromaticity of K₃-gluings of two wheels is studied. For each even integer n ≥ 6 and each odd integer 3 ≤ q ≤ [n/2] all K₃-gluings of wheels $W_\{q+2\}$ and $W_\{n-q+2\}$ create an χ-equivalent class.},

author = {Halina Bielak},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {chromatically equivalent graphs; chromatic polynomial; chromatically unique graphs; wheels},

language = {eng},

number = {1},

pages = {73-84},

title = {Equivalent classes for K₃-gluings of wheels},

url = {http://eudml.org/doc/270318},

volume = {18},

year = {1998},

}

TY - JOUR

AU - Halina Bielak

TI - Equivalent classes for K₃-gluings of wheels

JO - Discussiones Mathematicae Graph Theory

PY - 1998

VL - 18

IS - 1

SP - 73

EP - 84

AB - In this paper, the chromaticity of K₃-gluings of two wheels is studied. For each even integer n ≥ 6 and each odd integer 3 ≤ q ≤ [n/2] all K₃-gluings of wheels $W_{q+2}$ and $W_{n-q+2}$ create an χ-equivalent class.

LA - eng

KW - chromatically equivalent graphs; chromatic polynomial; chromatically unique graphs; wheels

UR - http://eudml.org/doc/270318

ER -

## References

top- [1] C.Y. Chao and E.G.Whitehead, Jr., On chromatic equivalence of graphs, in: Y. Alavi and D.R. Lick, eds., Theory and Applications of Graphs, Lecture Notes in Math. 642 (Springer, Berlin, 1978) 121-131, doi: 10.1007/BFb0070369.
- [2] C.Y. Chao and E.G. Whitehead, Jr., Chromatically unique graphs, Discrete Math. 27 (1979) 171-177, doi: 10.1016/0012-365X(79)90107-9. Zbl0411.05035
- [3] F. Harary, Graph Theory (Reading, 1969).
- [4] K.M. Koh and B.H. Goh, Two classes of chromatically unique graphs, Discrete Math. 82 (1990) 13-24, doi: 10.1016/0012-365X(90)90041-F. Zbl0697.05027
- [5] K.M. Koh and C.P. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990) 259-285, doi: 10.1007/BF01787578. Zbl0727.05023
- [6] K.M. Koh and C.P. Teo, The chromatic uniqueness of certain broken wheels, Discrete Math. 96 (1991) 65-69, doi: 10.1016/0012-365X(91)90471-D. Zbl0752.05029
- [7] B. Loerinc, Chromatic uniqueness of the generalized θ-graph, Discrete Math. 23 (1978) 313-316, doi: 10.1016/0012-365X(78)90012-2. Zbl0389.05034
- [8] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71, doi: 10.1016/S0021-9800(68)80087-0. Zbl0173.26203
- [9] S-J. Xu and N-Z. Li, The chromaticity of wheels, Discrete Math. 51 (1984)207-212, doi: 10.1016/0012-365X(84)90072-4. Zbl0547.05032

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.