An upper bound on the Laplacian spectral radius of the signed graphs
Discussiones Mathematicae Graph Theory (2008)
- Volume: 28, Issue: 2, page 345-359
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra 46 (1999) 299-312, doi: 10.1080/03081089908818623. Zbl0940.05042
- [2] F. Chung, Spectral Graph Theory (CMBS Lecture Notes. AMS Publication, 1997).
- [3] D.M. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs (Academic Press, New York, 1980). Zbl0458.05042
- [4] J.M. Guo, A new upper bound for the Laplacian spectral radius of graphs, Linear Algebra Appl. 400 (2005) 61-66, doi: 10.1016/j.laa.2004.10.022. Zbl1062.05091
- [5] F. Harary, On the notion of balanced in a signed graph, Michigan Math. J. 2 (1953) 143-146, doi: 10.1307/mmj/1028989917.
- [6] R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge Univ. Press, 1985). Zbl0576.15001
- [7] Y.P. Hou, J.S. Li and Y.L. Pan, On the Laplacian eigenvalues of signed graphs, Linear and Multilinear Algebra 51 (2003) 21-30, doi: 10.1080/0308108031000053611. Zbl1020.05044
- [8] L.L. Li, A simplified Brauer's theorem on matrix eigenvalues, Appl. Math. J. Chinese Univ. (B) 14 (1999) 259-264, doi: 10.1007/s11766-999-0034-x. Zbl0935.15018
- [9] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197 (1994) 143-176, doi: 10.1016/0024-3795(94)90486-3. Zbl0802.05053
- [10] T.F. Wang, Several sharp upper bounds for the largest Laplacian eigenvalues of a graph, to appear.
- [11] T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982) 47-74, doi: 10.1016/0166-218X(82)90033-6. Zbl0476.05080
- [12] X.D. Zhang, Two sharp upper bounds for the Laplacian eigenvalues, Linear Algebra Appl. 376 (2004) 207-213, doi: 10.1016/S0024-3795(03)00644-X. Zbl1037.05032
- [13] X.D. Zhang and J.S. Li, The Laplacian spectrum of a mixed graph, Linear Algebra Appl. 353 (2002) 11-20, doi: 10.1016/S0024-3795(01)00538-9. Zbl1003.05073