# Hardy class of functions defined by the Salagean operator

Norio Niwa; Toshiya Jimbo; Shigeyoshi Owa

Annales Polonici Mathematici (1998)

- Volume: 69, Issue: 1, page 25-30
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topNorio Niwa, Toshiya Jimbo, and Shigeyoshi Owa. "Hardy class of functions defined by the Salagean operator." Annales Polonici Mathematici 69.1 (1998): 25-30. <http://eudml.org/doc/270339>.

@article{NorioNiwa1998,

abstract = {We derive some properties of the Hardy class of analytic functions defined by the Salagean operator.},

author = {Norio Niwa, Toshiya Jimbo, Shigeyoshi Owa},

journal = {Annales Polonici Mathematici},

keywords = {Hardy class; Salagean operator; starlike},

language = {eng},

number = {1},

pages = {25-30},

title = {Hardy class of functions defined by the Salagean operator},

url = {http://eudml.org/doc/270339},

volume = {69},

year = {1998},

}

TY - JOUR

AU - Norio Niwa

AU - Toshiya Jimbo

AU - Shigeyoshi Owa

TI - Hardy class of functions defined by the Salagean operator

JO - Annales Polonici Mathematici

PY - 1998

VL - 69

IS - 1

SP - 25

EP - 30

AB - We derive some properties of the Hardy class of analytic functions defined by the Salagean operator.

LA - eng

KW - Hardy class; Salagean operator; starlike

UR - http://eudml.org/doc/270339

ER -

## References

top- [1] P. L. Duren, Theory of ${H}^{p}$ Spaces, Monographs Textbooks Pure Appl. Math. 38, Academic Press, New York. 1970.
- [2] P. J. Eenigenburg and F. R. Keogh, The Hardy class of some univalent functions and their derivatives, Michigan Math. J. 17 (1970), 335-346. Zbl0206.35901
- [3] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), 469-474. Zbl0224.30026
- [4] Y. C. Kim, K. S. Lee and H. M. Srivastava, Certain classes of integral operators associated with the Hardy space of analytic functions, Complex Variables Theory Appl. 20 (1992), 1-12. Zbl0774.30051
- [5] M. Nunokawa, On starlikeness of Libera transformation, Complex Variables Theory Appl. 17 (1991), 79-83. Zbl0758.30011
- [6] G. S. Salagean, Subclasses of univalent functions, in: Lecture Notes in Math. 1013, C. A. Cazacu, N. Boboc, M. Jurchescu and I. Susiu (eds.) Springer, Berlin 1983, 362-372.
- [7] D. R. Wilken and J. Feng, A remark on convex and starlike functions, J. London Math. Soc. 21 (1980), 287-290. Zbl0431.30007

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.