# Vague ideals of implication groupoids

Discussiones Mathematicae - General Algebra and Applications (2013)

- Volume: 33, Issue: 2, page 221-231
- ISSN: 1509-9415

## Access Full Article

top## Abstract

top## How to cite

topRavi Kumar Bandaru, and K.P. Shum. "Vague ideals of implication groupoids." Discussiones Mathematicae - General Algebra and Applications 33.2 (2013): 221-231. <http://eudml.org/doc/270340>.

@article{RaviKumarBandaru2013,

abstract = {We introduce the concept of vague ideals in a distributive implication groupoid and investigate their properties. The vague ideals of a distributive implication groupoid are also characterized.},

author = {Ravi Kumar Bandaru, K.P. Shum},

journal = {Discussiones Mathematicae - General Algebra and Applications},

keywords = {implication groupoids; distributive implication groupiods; vague ideals; distributive implication groupoids},

language = {eng},

number = {2},

pages = {221-231},

title = {Vague ideals of implication groupoids},

url = {http://eudml.org/doc/270340},

volume = {33},

year = {2013},

}

TY - JOUR

AU - Ravi Kumar Bandaru

AU - K.P. Shum

TI - Vague ideals of implication groupoids

JO - Discussiones Mathematicae - General Algebra and Applications

PY - 2013

VL - 33

IS - 2

SP - 221

EP - 231

AB - We introduce the concept of vague ideals in a distributive implication groupoid and investigate their properties. The vague ideals of a distributive implication groupoid are also characterized.

LA - eng

KW - implication groupoids; distributive implication groupiods; vague ideals; distributive implication groupoids

UR - http://eudml.org/doc/270340

ER -

## References

top- [1] J.C. Abbott, Semi-boolean algebras, Mathematicki Vensik, 19 (4) (1976), 177-198. http://www.digizeitschriften.de/en/dms/img/?PPN=PPN311571026_0019&DMDID=dmdlog47.
- [2] P. Bhattacharya and N.P. Mukherjee, Fuzzy relations and fuzzy groups, Inform. Sci. 36 (1985), 267-282. doi: 10.1016/0020-0255(85)90057-X Zbl0599.20003
- [3] R. Biswas, Vague groups, International Journal of Computational Cognition 4 (2) (2006), 20-23. http://www.yangsky.com/ijcc/pdf/ijcc423.pdf
- [4] I. Chajda and R. Hala, Congruences and ideals in Hilbert algebras, Kyungpook Math. J. 39 (1999), 429-432 (preprint).
- [5] I. Chajda and R. Hala R, Distributive implicaiton groupoids, Central European Journal of Mathematics 5 (3) (2007), 484-492. doi: 10.2478/s11533-007-0021-5
- [6] W.A. Dudek and Y.B. Jun, On fuzzy ideals in Hilbert algebras, Novi Sad J. Math. 29 (2) (1999), 193-207. ftp://ftp.gwdg.de/pub/EMIS/journals/NSJOM/Papers/29_2/NSJOM_29_2_193_207.pdf Zbl0989.03072
- [7] W.L. Gau and D.L. Buehrer, Vague sets, IEEE Transactions on systems-Man and Cybernetics 23 (1993), 610-614. doi: 10.1109/21.229476 Zbl0782.04008
- [8] Y.B. Jun and S.M. Hong, On fuzzy deductive systems of Hilbert algebras, Indian Journal of Pure and Applied Mathematics 27 (2) (1996), 141-151. http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_2/20005a24_141.pdf. Zbl0851.46054
- [9] Y.B. Jun and C.H. Park, Vague ideals of subtraction algebra, International Mathematical Forum 2 (2007), 2919-2926. http://www.m-hikari.com/imf-password2007/57-60-2007/parkIMF57-60-2007-1.pdf. Zbl1135.03350
- [10] J.N. Mordeson and D.S. Malik, Fuzzy Commutative algebra, World Scientific Publishing Co. pvt. Ltd, Singapore, 1998. http://www.worldscientific.com/worldscibooks/10.1142/3929. Zbl1026.13002
- [11] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X Zbl0139.24606

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.