A partition of the Catalan numbers and enumeration of genealogical trees
Discussiones Mathematicae Graph Theory (1996)
- Volume: 16, Issue: 2, page 181-195
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H. Bickel and E.H.A. Gerbracht, Lösung I zu Problem 73, Math. Semesterber. 42 (1995) 185-187.
- [2] H.L. Biggs et al., Graph Theory 1736-1936 (Clarendon Press, Oxford 1976).
- [3] A. Cayley, On the theory of the analytical forms called trees I, II, Phil. Mag. 13 (1857) 172-176; 18 (1859) 374-378.
- [4] R.B. Eggleton and R.K. Guy, Catalan Strikes Again! How Likely Is a Function to Be Convex?, Math. Magazine 61 (1988) 211-219, doi: 10.2307/2689355. Zbl0748.11019
- [5] P. Hilton and J. Pedersen, Catalan Numbers, Their Generalizations, and Their Uses, Math. Intelligencer 13 (1991) 64-75, doi: 10.1007/BF03024089. Zbl0767.05010
- [6] G. Polya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937) 145-254, doi: 10.1007/BF02546665. Zbl63.0547.04
- [7] W.W. Rouse Ball and H.S.M. Coxeter, Mathematical Recreations and Essays (12th Edition, Univ. of Toronto Press 1974).
- [8] R. Schimming, Lösung II zu Problem 73, Math. Semesterber. 42 (1995) 188-189.
- [9] P. Schreiber, Problem 73, Anzahl von Termen. Math. Semesterber. 41 (1994) 207.
- [10] P. Schreiber, Lösung III zu Problem 73, Math. Semesterber. 42 (1995) 189-190.
- [11] Wang Zhenyu, Some properties of ordered trees, Acta Math. Sinica 2 (1982) 81-83.
- [12] Wang Zhenyu and Sun Chaoyi, More on additive enumeration problems over trees, Acta Math. Sinica 10 (1990) 396-401. Zbl0737.05059