Quotient hyper pseudo BCK-algebras

Habib Harizavi; Tayebeh Koochakpoor; Rajab Ali Boorzoei

Discussiones Mathematicae - General Algebra and Applications (2013)

  • Volume: 33, Issue: 2, page 147-165
  • ISSN: 1509-9415

Abstract

top
In this paper, we first investigate some properties of the hyper pseudo BCK-algebras. Then we define the concepts of strong and reflexive hyper pseudo BCK-ideals and establish some relationships among them and the other types of hyper pseudo BCK-ideals. Also, we introduce the notion of regular congruence relation on hyper pseudo BCK-algebras and investigate some related properties. By using this relation, we construct the quotient hyper pseudo BCK-algebra and give some related results.

How to cite

top

Habib Harizavi, Tayebeh Koochakpoor, and Rajab Ali Boorzoei. "Quotient hyper pseudo BCK-algebras." Discussiones Mathematicae - General Algebra and Applications 33.2 (2013): 147-165. <http://eudml.org/doc/270358>.

@article{HabibHarizavi2013,
abstract = {In this paper, we first investigate some properties of the hyper pseudo BCK-algebras. Then we define the concepts of strong and reflexive hyper pseudo BCK-ideals and establish some relationships among them and the other types of hyper pseudo BCK-ideals. Also, we introduce the notion of regular congruence relation on hyper pseudo BCK-algebras and investigate some related properties. By using this relation, we construct the quotient hyper pseudo BCK-algebra and give some related results.},
author = {Habib Harizavi, Tayebeh Koochakpoor, Rajab Ali Boorzoei},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {hyper pseudo BCK-algebra; normal hyper pseudo BCK-ideal; quotient hyper pseudo BCK-algebra; hyper pseudo BCK-algebras; hyper pseudo BCK-ideals; regular congruences},
language = {eng},
number = {2},
pages = {147-165},
title = {Quotient hyper pseudo BCK-algebras},
url = {http://eudml.org/doc/270358},
volume = {33},
year = {2013},
}

TY - JOUR
AU - Habib Harizavi
AU - Tayebeh Koochakpoor
AU - Rajab Ali Boorzoei
TI - Quotient hyper pseudo BCK-algebras
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2013
VL - 33
IS - 2
SP - 147
EP - 165
AB - In this paper, we first investigate some properties of the hyper pseudo BCK-algebras. Then we define the concepts of strong and reflexive hyper pseudo BCK-ideals and establish some relationships among them and the other types of hyper pseudo BCK-ideals. Also, we introduce the notion of regular congruence relation on hyper pseudo BCK-algebras and investigate some related properties. By using this relation, we construct the quotient hyper pseudo BCK-algebra and give some related results.
LA - eng
KW - hyper pseudo BCK-algebra; normal hyper pseudo BCK-ideal; quotient hyper pseudo BCK-algebra; hyper pseudo BCK-algebras; hyper pseudo BCK-ideals; regular congruences
UR - http://eudml.org/doc/270358
ER -

References

top
  1. [1] R.A. Borzooei and H. Harizavi, Regular Congruence Relations on Hyper BCK-algebras, Sci. Math. Jap. 61 (2005) 217-231. Zbl1067.06016
  2. [2] R.A. Borzooei, A. Hasankhani, M.M. Zahedi and Y.B. Jun, On hyper K-algebra, Math. Jap. 52 (2000) 113-121. 
  3. [3] R.A. Borzooei, A. Rezazadeh and R. Ameri, On hyper pseudo BCK-algebra, Iranian J. Math. Sci. and Inf., to appear. Zbl1306.06017
  4. [4] R.A. Borzooei, M.M. Zahedi and H. Rezaei, Classification of hyper BCK-algebras of order 3, Italian J. Pure Appl. Math. 12 (2002) 175-184. Zbl1169.06301
  5. [5] P. Corsini and V. Leoreanu, Applications of Hyper Structure Theory (Kluwer Academic Publications, 2003). doi: 10.1007/978-1-4757-3714-1. Zbl1027.20051
  6. [6] G. Ggeorgesu and A. Iorulescu, Pseudo BCK-algebra, in: Proceeding of DMTCS 01, Combinatorics and Logic (Ed(s)), (Springer London, 2001) 97-114. 
  7. [7] Sh. Ghorbani, A. Hasankhani and E. Eslami, Hyper MV-algebras, Set-Valued Mathematics and Applications 1 (2008) 205-222. 
  8. [8] A. Iorgulescu, Classes of Pseudo BCK-algebra-Part I, Journal of Multiple-valued Logic and Soft Computing 12 (2006) 71-130. 
  9. [9] A. Iorgulescu, Classes of Pseudo BCK-algebra-Part II, Journal of Multiple-valued Logic and Soft Computing 12 (2006) 575-629. 
  10. [10] Y. Imai and K. Iseki, On Axiom System of Prepositional Calculi XIV, Proc. Japan Acad. 42 (1996) 26-29. 
  11. [11] Y.B. Jun, M. Kondo and K.H. Kim, Pseudo Ideals of Pseudo BCK-algebras, Sci. Math. Jap. 8 (2003) 87-91. 
  12. [12] Y.B. Jun, M.M. Zahedi, X.L. Xin and R.A. Borzooei, On Hyper BCK-algebra, Italian J. Pure and Appl. Math. 10 (2000) 127-136. Zbl1008.06014
  13. [13] F. Marty, Scu une généralization de la notion de groups, in: 8th Congress Math. (Ed(s)), (Scandinavian, Stockholm, 1934) 45-49. 
  14. [14] Jie Meng and Young Bae Jun, BCK-algebras (Kyung Moon Sa. Co., 1994). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.