The cycle-complete graph Ramsey number r(C₅,K₇)
Discussiones Mathematicae Graph Theory (2005)
- Volume: 25, Issue: 1-2, page 129-139
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topIngo Schiermeyer. "The cycle-complete graph Ramsey number r(C₅,K₇)." Discussiones Mathematicae Graph Theory 25.1-2 (2005): 129-139. <http://eudml.org/doc/270373>.
@article{IngoSchiermeyer2005,
abstract = {The cycle-complete graph Ramsey number r(Cₘ,Kₙ) is the smallest integer N such that every graph G of order N contains a cycle Cₘ on m vertices or has independence number α(G) ≥ n. It has been conjectured by Erdős, Faudree, Rousseau and Schelp that r(Cₘ,Kₙ) = (m-1)(n-1)+1 for all m ≥ n ≥ 3 (except r(C₃,K₃) = 6). This conjecture holds for 3 ≤ n ≤ 6. In this paper we will present a proof for r(C₅,K₇) = 25.},
author = {Ingo Schiermeyer},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {Ramsey numbers; extremal graphs},
language = {eng},
number = {1-2},
pages = {129-139},
title = {The cycle-complete graph Ramsey number r(C₅,K₇)},
url = {http://eudml.org/doc/270373},
volume = {25},
year = {2005},
}
TY - JOUR
AU - Ingo Schiermeyer
TI - The cycle-complete graph Ramsey number r(C₅,K₇)
JO - Discussiones Mathematicae Graph Theory
PY - 2005
VL - 25
IS - 1-2
SP - 129
EP - 139
AB - The cycle-complete graph Ramsey number r(Cₘ,Kₙ) is the smallest integer N such that every graph G of order N contains a cycle Cₘ on m vertices or has independence number α(G) ≥ n. It has been conjectured by Erdős, Faudree, Rousseau and Schelp that r(Cₘ,Kₙ) = (m-1)(n-1)+1 for all m ≥ n ≥ 3 (except r(C₃,K₃) = 6). This conjecture holds for 3 ≤ n ≤ 6. In this paper we will present a proof for r(C₅,K₇) = 25.
LA - eng
KW - Ramsey numbers; extremal graphs
UR - http://eudml.org/doc/270373
ER -
References
top- [1] J.A. Bondy and P. Erdős, Ramsey numbers for cycles in graphs, J. Combin. Theory (B) 14 (1973) 46-54, doi: 10.1016/S0095-8956(73)80005-X. Zbl0248.05127
- [2] B. Bollobás, C.J. Jayawardene, Z.K. Min, C.C. Rousseau, H.Y. Ru and J. Yang, On a conjecture involving cycle-complete graph Ramsey numbers, Australas. J. Combin. 22 (2000) 63-72. Zbl0963.05094
- [3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976). Zbl1226.05083
- [4] V. Chvátal and P. Erdős, A note on hamiltonian circuits, Discrete Math. 2 (1972) 111-113, doi: 10.1016/0012-365X(72)90079-9. Zbl0233.05123
- [5] P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, On cycle-complete graph Ramsey numbers, J. Graph Theory 2 (1978) 53-64, doi: 10.1002/jgt.3190020107. Zbl0383.05027
- [6] R.J. Faudree and R.H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974) 313-329, doi: 10.1016/0012-365X(74)90151-4. Zbl0294.05122
- [7] C.J. Jayawardene and C.C. Rousseau, The Ramsey number for a qudrilateral versus a complete graph on six vertices, Congr. Numer. 123 (1997) 97-108. Zbl0902.05050
- [8] C.J. Jayawardene and C.C. Rousseau, The Ramsey Number for a Cycle of Length Five vs. a Complete Graph of Order Six, J. Graph Theory 35 (2000) 99-108, doi: 10.1002/1097-0118(200010)35:2<99::AID-JGT4>3.0.CO;2-6 Zbl0969.05044
- [9] V. Nikiforov, The cycle-complete graph Ramsey numbers, preprint 2003, Univ. of Memphis. Zbl1071.05051
- [10] S.P. Radziszowski, Small Ramsey numbers, Elec. J. Combin. 1 (1994) DS1.
- [11] S.P. Radziszowski and K.-K. Tse, A Computational Approach for the Ramsey Numbers R(C₄,Kₙ), J. Comb. Math. Comb. Comput. 42 (2002) 195-207.
- [12] V. Rosta, On a Ramsey Type Problem of J.A. Bondy and P. Erdős, I & II, J. Combin. Theory (B) 15 (1973) 94-120, doi: 10.1016/0095-8956(73)90035-X.
- [13] I. Schiermeyer, All Cycle-Complete Graph Ramsey Numbers r(Cₘ, K₆), J. Graph Theory 44 (2003) 251-260, doi: 10.1002/jgt.10145.
- [14] Y.J. Sheng, H.Y. Ru and Z.K. Min, The value of the Ramsey number R(Cₙ,K₄) is 3(n-1) +1 (n ≥ 4), Australas. J. Combin. 20 (1999) 205-206. Zbl0931.05057
- [15] A. Thomason, private communication.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.