A fixed point method in dynamic processes for a class of elastic-viscoplastic materials
Annales Polonici Mathematici (1998)
- Volume: 68, Issue: 3, page 237-247
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topA. Amassad. "A fixed point method in dynamic processes for a class of elastic-viscoplastic materials." Annales Polonici Mathematici 68.3 (1998): 237-247. <http://eudml.org/doc/270386>.
@article{A1998,
abstract = {Two problems are considered describing dynamic processes for a class of rate-type elastic-viscoplastic materials with or without internal state variable. The existence and uniqueness of the solution is proved using classical results of linear elasticity theory together with a fixed point method.},
author = {A. Amassad},
journal = {Annales Polonici Mathematici},
keywords = {viscoplasticity; dynamic processes; Galerkin method; fixed point; internal state variable; rate-type materials; existence; uniqueness; linear elasticity},
language = {eng},
number = {3},
pages = {237-247},
title = {A fixed point method in dynamic processes for a class of elastic-viscoplastic materials},
url = {http://eudml.org/doc/270386},
volume = {68},
year = {1998},
}
TY - JOUR
AU - A. Amassad
TI - A fixed point method in dynamic processes for a class of elastic-viscoplastic materials
JO - Annales Polonici Mathematici
PY - 1998
VL - 68
IS - 3
SP - 237
EP - 247
AB - Two problems are considered describing dynamic processes for a class of rate-type elastic-viscoplastic materials with or without internal state variable. The existence and uniqueness of the solution is proved using classical results of linear elasticity theory together with a fixed point method.
LA - eng
KW - viscoplasticity; dynamic processes; Galerkin method; fixed point; internal state variable; rate-type materials; existence; uniqueness; linear elasticity
UR - http://eudml.org/doc/270386
ER -
References
top- [1] N. Cristescu and I. Suliciu, Viscoplasticity, Martius Nijhoff and Editura Tehnica, Bucarest, 1982.
- [2] S. Djabi and M. Sofonea, A fixed point method in quasistatic rate-type viscoplasticty, Appl. Math. Comput. Sci., 1993. Zbl0783.73027
- [3] G. Duvaut et J. L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972. Zbl0298.73001
- [4] I. R. Ionescu, Dynamic processes for a class of elastic-viscoplastic materials, Stud. CBRC Mat., Bucureşti, 1992. Zbl0761.73040
- [5] I. R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford Univ. Press, Oxford, 1993. Zbl0787.73005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.