# Some news about the independence number of a graph

Discussiones Mathematicae Graph Theory (2000)

- Volume: 20, Issue: 1, page 71-79
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topJochen Harant. "Some news about the independence number of a graph." Discussiones Mathematicae Graph Theory 20.1 (2000): 71-79. <http://eudml.org/doc/270402>.

@article{JochenHarant2000,

abstract = {For a finite undirected graph G on n vertices some continuous optimization problems taken over the n-dimensional cube are presented and it is proved that their optimum values equal the independence number of G.},

author = {Jochen Harant},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {graph; independence; independence number},

language = {eng},

number = {1},

pages = {71-79},

title = {Some news about the independence number of a graph},

url = {http://eudml.org/doc/270402},

volume = {20},

year = {2000},

}

TY - JOUR

AU - Jochen Harant

TI - Some news about the independence number of a graph

JO - Discussiones Mathematicae Graph Theory

PY - 2000

VL - 20

IS - 1

SP - 71

EP - 79

AB - For a finite undirected graph G on n vertices some continuous optimization problems taken over the n-dimensional cube are presented and it is proved that their optimum values equal the independence number of G.

LA - eng

KW - graph; independence; independence number

UR - http://eudml.org/doc/270402

ER -

## References

top- [1] E. Bertram, P. Horak, Lower bounds on the independence number, Geombinatorics, (V) 3 (1996) 93-98. Zbl0972.05024
- [2] R. Boppana, M.M. Halldorsson, Approximating maximum independent sets by excluding subgraphs, BIT 32 (1992) 180-196, doi: 10.1007/BF01994876. Zbl0761.68044
- [3] Y. Caro, New results on the independence number (Technical Report, Tel-Aviv University, 1979).
- [4] S. Fajtlowicz, On the size of independent sets in graphs, in: Proc. 9th S-E Conf. on Combinatorics, Graph Theory and Computing (Boca Raton 1978) 269-274. Zbl0434.05044
- [5] S. Fajtlowicz, Independence, clique size and maximum degree, Combinatorica 4 (1984) 35-38, doi: 10.1007/BF02579154. Zbl0576.05025
- [6] M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness (W.H. Freeman and Company, San Francisco, 1979). Zbl0411.68039
- [7] M.M. Halldorsson, J. Radhakrishnan, Greed is good: Approximating independent sets in sparse and bounded-degree graphs, Algorithmica 18 (1997) 145-163, doi: 10.1007/BF02523693. Zbl0866.68077
- [8] J. Harant, A lower bound on the independence number of a graph, Discrete Math. 188 (1998) 239-243, doi: 10.1016/S0012-365X(98)00048-X. Zbl0958.05067
- [9] J. Harant, A. Pruchnewski, M. Voigt, On dominating sets and independent sets of graphs, Combinatorics, Probability and Computing 8 (1999) 547-553, doi: 10.1017/S0963548399004034. Zbl0959.05080
- [10] J. Harant, I. Schiermeyer, On the independence number of a graph in terms of order and size, submitted. Zbl1030.05091
- [11] T.S. Motzkin, E.G. Straus, Maxima for graphs and a new proof of a theorem of Turan, Canad. J. Math. 17 (1965) 533-540, doi: 10.4153/CJM-1965-053-6. Zbl0129.39902
- [12] O. Murphy, Lower bounds on the stability number of graphs computed in terms of degrees, Discrete Math. 90 (1991) 207-211, doi: 10.1016/0012-365X(91)90357-8. Zbl0755.05055
- [13] S.M. Selkow, The independence number of graphs in terms of degrees, Discrete Math. 122 (1993) 343-348, doi: 10.1016/0012-365X(93)90307-F. Zbl0791.05062
- [14] S.M. Selkow, A probabilistic lower bound on the independence number of graphs, Discrete Math. 132 (1994) 363-365, doi: 10.1016/0012-365X(93)00102-B. Zbl0810.05039
- [15] J.B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983) 83-87, doi: 10.1016/0012-365X(83)90273-X. Zbl0516.05053
- [16] J.B. Shearer, A note on the independence number of triangle-free graphs, II, J. Combin. Theory (B) 53 (1991) 300-307, doi: 10.1016/0095-8956(91)90080-4. Zbl0753.05074
- [17] V.K. Wei, A lower bound on the stability number of a simple graph (Bell Laboratories Technical Memorandum 81-11217-9, Murray Hill, NJ, 1981).

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.