Monochromatic kernel-perfectness of special classes of digraphs
Hortensia Galeana-Sánchez; Luis Alberto Jiménez Ramírez
Discussiones Mathematicae Graph Theory (2007)
- Volume: 27, Issue: 3, page 389-400
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topHortensia Galeana-Sánchez, and Luis Alberto Jiménez Ramírez. "Monochromatic kernel-perfectness of special classes of digraphs." Discussiones Mathematicae Graph Theory 27.3 (2007): 389-400. <http://eudml.org/doc/270413>.
@article{HortensiaGaleana2007,
abstract = {In this paper, we introduce the concept of monochromatic kernel-perfect digraph, and we prove the following two results:
(1) If D is a digraph without monochromatic directed cycles, then D and each $α_v,v ∈ V(D)$ are monochromatic kernel-perfect digraphs if and only if the composition over D of $(α_v)_\{v ∈ V(D)\}$ is a monochromatic kernel-perfect digraph.
(2) D is a monochromatic kernel-perfect digraph if and only if for any B ⊆ V(D), the duplication of D over B, $D^B$, is a monochromatic kernel-perfect digraph.},
author = {Hortensia Galeana-Sánchez, Luis Alberto Jiménez Ramírez},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {kernel; kernel by monochromatic paths; composition; duplication; monochromatic paths},
language = {eng},
number = {3},
pages = {389-400},
title = {Monochromatic kernel-perfectness of special classes of digraphs},
url = {http://eudml.org/doc/270413},
volume = {27},
year = {2007},
}
TY - JOUR
AU - Hortensia Galeana-Sánchez
AU - Luis Alberto Jiménez Ramírez
TI - Monochromatic kernel-perfectness of special classes of digraphs
JO - Discussiones Mathematicae Graph Theory
PY - 2007
VL - 27
IS - 3
SP - 389
EP - 400
AB - In this paper, we introduce the concept of monochromatic kernel-perfect digraph, and we prove the following two results:
(1) If D is a digraph without monochromatic directed cycles, then D and each $α_v,v ∈ V(D)$ are monochromatic kernel-perfect digraphs if and only if the composition over D of $(α_v)_{v ∈ V(D)}$ is a monochromatic kernel-perfect digraph.
(2) D is a monochromatic kernel-perfect digraph if and only if for any B ⊆ V(D), the duplication of D over B, $D^B$, is a monochromatic kernel-perfect digraph.
LA - eng
KW - kernel; kernel by monochromatic paths; composition; duplication; monochromatic paths
UR - http://eudml.org/doc/270413
ER -
References
top- [1] C. Berge, Graphs (North-Holland, Amsterdam, 1985).
- [2] M. Blidia, P. Duchet, H. Jacob, F. Maffray and H. Meyniel, Some operations preserving the existence of kernels, Discrete Math. 205 (1999) 211-216, doi: 10.1016/S0012-365X(99)00026-6. Zbl0936.05047
- [3] M. Borowiecki and A. Szelecka, One-factorizations of the generalized Cartesian product and of the X-join of regular graphs, Discuss. Math. Graph Theory 13 (1993) 15-19. Zbl0794.05099
- [4] M. Burlet and J. Uhry, Parity Graphs, Annals of Discrete Math. 21 (1984) 253-277 Zbl0558.05036
- [5] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8. Zbl0456.05032
- [6] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6. Zbl0529.05024
- [7] H. Galeana-Sánchez, On monochromatic paths and monochromatics cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-110, doi: 10.1016/0012-365X(95)00036-V.
- [8] H. Galeana-Sánchez and V. Neumann-Lara, On the dichromatic number in kernel theory, Math. Slovaca 48 (1998) 213-219. Zbl0937.05048
- [9] H. Galeana-Sánchez and R. Rojas-Monroy, On monochromatic paths and monochromatic 4-cycles in edge-coloured bipartite tournaments, Discrete Math. 285 (2004) 313-318, doi: 10.1016/j.disc.2004.03.005. Zbl1049.05042
- [10] G. Hahn, P. Ille and R.E. Woodrow, Absorbing sets in arc-coloured tournaments, Discrete Math. 283 (2004) 93-99, doi: 10.1016/j.disc.2003.10.024. Zbl1042.05049
- [11] M. Kucharska, On (k,l)-kernels of orientations of special graphs, Ars Combinatoria 60 (2001) 137-147. Zbl1068.05504
- [12] M. Kucharska, On (k,l)-kernel perfectness of special classes of digraphs, Discussiones Mathematicae Graph Theory 25 (2005) 103-119, doi: 10.7151/dmgt.1265. Zbl1074.05043
- [13] M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (1953) 573, doi: 10.2307/1969755. Zbl0053.02902
- [14] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory (B) 45 (1988) 108-111, doi: 10.1016/0095-8956(88)90059-7. Zbl0654.05033
- [15] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271-275, doi: 10.1016/0095-8956(82)90047-8. Zbl0488.05036
- [16] J. von Neumann and O. Morgenstern, Theory of games and economic behavior (Princeton University Press, Princeton, 1944). Zbl0063.05930
- [17] A. Włoch and I. Włoch, On (k,l)-kernels in generalized products, Discrete Math. 164 (1997) 295-301, doi: 10.1016/S0012-365X(96)00064-7.
- [18] I. Włoch, On kernels by monochromatic paths in the corona of digraphs, preprint.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.