Invariant Hodge forms and equivariant splittings of algebraic manifolds

Michał Sadowski

Annales Polonici Mathematici (1997)

  • Volume: 67, Issue: 3, page 277-283
  • ISSN: 0066-2216

How to cite

top

Michał Sadowski. "Invariant Hodge forms and equivariant splittings of algebraic manifolds." Annales Polonici Mathematici 67.3 (1997): 277-283. <http://eudml.org/doc/270426>.

@article{MichałSadowski1997,
abstract = {},
author = {Michał Sadowski},
journal = {Annales Polonici Mathematici},
keywords = {holomorphic action; fibration; Hodge form; equivariant splitting; algebraic manifold},
language = {eng},
number = {3},
pages = {277-283},
title = {Invariant Hodge forms and equivariant splittings of algebraic manifolds},
url = {http://eudml.org/doc/270426},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Michał Sadowski
TI - Invariant Hodge forms and equivariant splittings of algebraic manifolds
JO - Annales Polonici Mathematici
PY - 1997
VL - 67
IS - 3
SP - 277
EP - 283
AB -
LA - eng
KW - holomorphic action; fibration; Hodge form; equivariant splitting; algebraic manifold
UR - http://eudml.org/doc/270426
ER -

References

top
  1. [1] E. Calabi, On Kähler manifolds with vanishing canonical class, in: Algebraic Geometry and Topology, Princeton Univ. Press, 1957, 78-89. Zbl0080.15002
  2. [2] J. B. Carrell, Holomorphically injective complex toral actions, in: Proc. Second Conference on Compact Transformation Groups, Part 2, Lecture Notes in Math. 299, Springer, 1972, 205-236. 
  3. [3] J. Matsushima, Holomorphic vector fields and the first Chern class of a Hodge manifold, J. Differential Geom. 3 (1969), 477-480. Zbl0201.25902
  4. [4] D. Mumford, Abelian Varieties, Oxford Univ. Press, Oxford, 1970. 
  5. [5] M. Sadowski, Equivariant splittings associated with smooth toral actions, in: Algebraic Topology, Proc., Poznań 1989, Lecture Notes in Math. 1474, Springer, 1991, 183-193. Zbl0739.57023
  6. [6] M. Sadowski, Holomorphic splittings associated with holomorphic complex torus actions, Indag. Math. (N.S.) 5 (1994), 215-219. Zbl0811.32026

NotesEmbed ?

top

You must be logged in to post comments.