Upper bounds for the domination numbers of toroidal queens graphs
Discussiones Mathematicae Graph Theory (2003)
- Volume: 23, Issue: 1, page 163-175
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] W. Ahrens, Mathematische Unterhalten und Spiele (B.G. Teubner, Leipzig-Berlin, 1910).
- [2] M. Bezzel, Schachfreund, Berliner Schachzeitung, 3 (1848) 363.
- [3] A.P. Burger, E.J. Cockayne and C.M. Mynhardt, Queens graphs for chessboards on the torus, Australas. J. Combin. 24 (2001) 231-246. Zbl0979.05080
- [4] A.P. Burger and C.M. Mynhardt, Symmetry and domination in queens graphs, Bulletin of the ICA 29 (2000) 11-24. Zbl0954.05034
- [5] A.P. Burger and C.M. Mynhardt, Properties of dominating sets of the queens graph , Utilitas Math. 57 (2000) 237-253. Zbl0955.05076
- [6] A.P. Burger and C.M. Mynhardt, An improved upper bound for queens domination numbers, Discrete Math., to appear. Zbl1015.05066
- [7] A.P. Burger, C.M. Mynhardt and W.D. Weakley, The domination number of the toroidal queens graph of size 3k × 3k, Australas. J. Combin., to appear. Zbl1030.05094
- [8] E.J. Cockayne, Chessboard Domination Problems, Discrete Math. 86 (1990) 13-20, doi: 10.2307/2325220. Zbl0818.05057
- [13] P.R.J. Östergå rd and W.D. Weakley, Values of domination numbers of the queen's graph, Electron. J. Combin. 8 (2001) no. 1, Research paper 29, 19 pp.
- [14] W.D. Weakley, Domination In The Queen's Graph, in: Y. Alavi and A.J. Schwenk, eds, Graph Theory, Combinatorics, and Algorithms, Volume 2, pages 1223-1232 (Wiley-Interscience, New York, 1995). Zbl0842.05053
- [15] W.D. Weakley, A lower bound for domination numbers of the queen's graph, J. Combin. Math. Combin. Comput., to appear. Zbl1012.05124
- [16] W.D. Weakley, Upper bounds for domination numbers of the queen's graph, Discrete Math. 242 (2002) 229-243, doi:10.1016/S0012-365X(00)00467-2.