Upper bounds for the domination numbers of toroidal queens graphs

Christina M. Mynhardt

Discussiones Mathematicae Graph Theory (2003)

  • Volume: 23, Issue: 1, page 163-175
  • ISSN: 2083-5892

Abstract

top
We determine upper bounds for γ ( Q n t ) and i ( Q t ) , the domination and independent domination numbers, respectively, of the graph Q t obtained from the moves of queens on the n×n chessboard drawn on the torus.

How to cite

top

Christina M. Mynhardt. "Upper bounds for the domination numbers of toroidal queens graphs." Discussiones Mathematicae Graph Theory 23.1 (2003): 163-175. <http://eudml.org/doc/270444>.

@article{ChristinaM2003,
abstract = {We determine upper bounds for $γ(Qn^t)$ and $i(Qₙ^t)$, the domination and independent domination numbers, respectively, of the graph $Qₙ^t$ obtained from the moves of queens on the n×n chessboard drawn on the torus.},
author = {Christina M. Mynhardt},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {queens graph; toroidal chessboards; queens domination problem; independent domination number; toroidal chessboard},
language = {eng},
number = {1},
pages = {163-175},
title = {Upper bounds for the domination numbers of toroidal queens graphs},
url = {http://eudml.org/doc/270444},
volume = {23},
year = {2003},
}

TY - JOUR
AU - Christina M. Mynhardt
TI - Upper bounds for the domination numbers of toroidal queens graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2003
VL - 23
IS - 1
SP - 163
EP - 175
AB - We determine upper bounds for $γ(Qn^t)$ and $i(Qₙ^t)$, the domination and independent domination numbers, respectively, of the graph $Qₙ^t$ obtained from the moves of queens on the n×n chessboard drawn on the torus.
LA - eng
KW - queens graph; toroidal chessboards; queens domination problem; independent domination number; toroidal chessboard
UR - http://eudml.org/doc/270444
ER -

References

top
  1. [1] W. Ahrens, Mathematische Unterhalten und Spiele (B.G. Teubner, Leipzig-Berlin, 1910). 
  2. [2] M. Bezzel, Schachfreund, Berliner Schachzeitung, 3 (1848) 363. 
  3. [3] A.P. Burger, E.J. Cockayne and C.M. Mynhardt, Queens graphs for chessboards on the torus, Australas. J. Combin. 24 (2001) 231-246. Zbl0979.05080
  4. [4] A.P. Burger and C.M. Mynhardt, Symmetry and domination in queens graphs, Bulletin of the ICA 29 (2000) 11-24. Zbl0954.05034
  5. [5] A.P. Burger and C.M. Mynhardt, Properties of dominating sets of the queens graph Q 4 k + 3 , Utilitas Math. 57 (2000) 237-253. Zbl0955.05076
  6. [6] A.P. Burger and C.M. Mynhardt, An improved upper bound for queens domination numbers, Discrete Math., to appear. Zbl1015.05066
  7. [7] A.P. Burger, C.M. Mynhardt and W.D. Weakley, The domination number of the toroidal queens graph of size 3k × 3k, Australas. J. Combin., to appear. Zbl1030.05094
  8. [8] E.J. Cockayne, Chessboard Domination Problems, Discrete Math. 86 (1990) 13-20, doi: 10.2307/2325220. Zbl0818.05057
  9. [13] P.R.J. Östergå rd and W.D. Weakley, Values of domination numbers of the queen's graph, Electron. J. Combin. 8 (2001) no. 1, Research paper 29, 19 pp. 
  10. [14] W.D. Weakley, Domination In The Queen's Graph, in: Y. Alavi and A.J. Schwenk, eds, Graph Theory, Combinatorics, and Algorithms, Volume 2, pages 1223-1232 (Wiley-Interscience, New York, 1995). Zbl0842.05053
  11. [15] W.D. Weakley, A lower bound for domination numbers of the queen's graph, J. Combin. Math. Combin. Comput., to appear. Zbl1012.05124
  12. [16] W.D. Weakley, Upper bounds for domination numbers of the queen's graph, Discrete Math. 242 (2002) 229-243, doi:10.1016/S0012-365X(00)00467-2. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.