# On extensions of the Mittag-Leffler theorem

Annales Polonici Mathematici (1998)

- Volume: 68, Issue: 3, page 249-256
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topEwa Ligocka. "On extensions of the Mittag-Leffler theorem." Annales Polonici Mathematici 68.3 (1998): 249-256. <http://eudml.org/doc/270451>.

@article{EwaLigocka1998,

abstract = {The classical Mittag-Leffler theorem on meromorphic functions is extended to the case of functions and hyperfunctions belonging to the kernels of linear partial differential operators with constant coefficients.},

author = {Ewa Ligocka},

journal = {Annales Polonici Mathematici},

keywords = {hyperfunction; Laurent expansion; elliptic; polyharmonic; hypoelliptic; P-convex for supports; harmonic and polyharmonic function},

language = {eng},

number = {3},

pages = {249-256},

title = {On extensions of the Mittag-Leffler theorem},

url = {http://eudml.org/doc/270451},

volume = {68},

year = {1998},

}

TY - JOUR

AU - Ewa Ligocka

TI - On extensions of the Mittag-Leffler theorem

JO - Annales Polonici Mathematici

PY - 1998

VL - 68

IS - 3

SP - 249

EP - 256

AB - The classical Mittag-Leffler theorem on meromorphic functions is extended to the case of functions and hyperfunctions belonging to the kernels of linear partial differential operators with constant coefficients.

LA - eng

KW - hyperfunction; Laurent expansion; elliptic; polyharmonic; hypoelliptic; P-convex for supports; harmonic and polyharmonic function

UR - http://eudml.org/doc/270451

ER -

## References

top- [1] N. Aronszajn, T. Creese and L. Lipkin, Polyharmonic Functions, Clarendon Press, Oxford, 1983.
- [2] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer, 1992. Zbl0765.31001
- [3] M. Brelot, Eléments de la théorie classique du potentiel, 2-ème éd., Paris, 1961.
- [4] S. Y. Chung, D. Kim and J. R. Lee, Generalized Bôcher's theorem, J. Math. Anal. Appl. 188 (1994), 341-345. Zbl0818.31004
- [5] S. J. Gardiner, Harmonic Approximation, London Math. Soc. Lecture Note Ser. 221, Cambridge Univ. Press, 1995. Zbl0826.31002
- [6] R. Harvey and J. C. Polking, A Laurent expansion for solutions to elliptic equations, Trans. Amer. Math. Soc. 180 (1973), 407-413. Zbl0285.35024
- [7] L. Hörmander, The Analysis of Linear Partial Differential Operators I, II, Springer, 1983. Zbl0521.35002
- [8] V. P. Palamodov, Linear Differential Operators with Constant Coefficients, Nauka, Moscow, 1967 (in Russian). Zbl0191.43401
- [9] P. Schapira, Théorie des Hyperfonctions, Lecture Notes in Math. 126, Springer, 1970. Zbl0201.44805
- [10] N. N. Tarkhanov, Laurent expansions and local properties of solutions of elliptic systems, Sibirsk. Mat. Zh. 29 (6) (1988), 124-134 (in Russian).
- [11] N. N. Tarkhanov, Laurent Series for Solutions of Elliptic Equations, Nauka, Novosibirsk, 1991 (in Russian). Zbl0743.35021
- [12] N. N. Tarkhanov, The Analysis of Solutions of Elliptic Equations, Kluwer, Dordrecht, 1997. Zbl0877.35002
- [13] M. Wachman, Generalized Laurent series for singular solutions of elliptic partial differential equations, Proc. Amer. Math. Soc. 15 (1964), 101-108. Zbl0145.14503

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.