# On chromaticity of graphs

Discussiones Mathematicae Graph Theory (1995)

- Volume: 15, Issue: 1, page 19-31
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topEwa Łazuka. "On chromaticity of graphs." Discussiones Mathematicae Graph Theory 15.1 (1995): 19-31. <http://eudml.org/doc/270453>.

@article{EwaŁazuka1995,

abstract = {In this paper we obtain the explicit formulas for chromatic polynomials of cacti. From the results relating to cacti we deduce the analogous formulas for the chromatic polynomials of n-gon-trees. Besides, we characterize unicyclic graphs by their chromatic polynomials. We also show that the so-called clique-forest-like graphs are chromatically equivalent.},

author = {Ewa Łazuka},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {chromatic polynomial; chromatically equivalent graphs; chromatic characterization; chromaticity; chromatic polynomials; cacti; trees; unicyclic graphs},

language = {eng},

number = {1},

pages = {19-31},

title = {On chromaticity of graphs},

url = {http://eudml.org/doc/270453},

volume = {15},

year = {1995},

}

TY - JOUR

AU - Ewa Łazuka

TI - On chromaticity of graphs

JO - Discussiones Mathematicae Graph Theory

PY - 1995

VL - 15

IS - 1

SP - 19

EP - 31

AB - In this paper we obtain the explicit formulas for chromatic polynomials of cacti. From the results relating to cacti we deduce the analogous formulas for the chromatic polynomials of n-gon-trees. Besides, we characterize unicyclic graphs by their chromatic polynomials. We also show that the so-called clique-forest-like graphs are chromatically equivalent.

LA - eng

KW - chromatic polynomial; chromatically equivalent graphs; chromatic characterization; chromaticity; chromatic polynomials; cacti; trees; unicyclic graphs

UR - http://eudml.org/doc/270453

ER -

## References

top- [1] C. Y. Chao and N. Z. Li, On trees of polygons, Archiv Math. 45 (1985) 180-185, doi: 10.1007/BF01270490. Zbl0575.05027
- [2] C. Y. Chao and E. G. Whitehead Jr., On chromatic equivalence of graphs, in: Y. Alavi and D. R. Lick, ed., Theory and Applications of Graphs, Lecture Notes in Math. 642 (Springer, Berlin, 1978) 121-131.
- [3] G. L. Chia, A note on chromatic uniqueness of graphs, J. Graph Theory 10 (1986) 541-543, doi: 10.1007/BFb0070369. Zbl0616.05035
- [4] B. Eisenberg, Generalized lower bounds for the chromatic polynomials, in: A. Dold and B. Eckmann, eds., Recent Trends in Graph Theory, Lecture Notes in Math. 186 (Springer, Berlin, 1971) 85-94, doi: 10.1007/BFb0059427.
- [5] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).
- [6] R. C. Read, An introduction to chromatic polynomials, J. Combin. Theory. 4 (1968) 52-71, doi: 10.1016/S0021-9800(68)80087-0. Zbl0173.26203
- [7] R. E. Tarjan, Depth first search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146-160, doi: 10.1137/0201010. Zbl0251.05107
- [8] C. D. Wakelin and D. R. Woodall, Chromatic polynomials, polygon trees, and outerplanar graphs, J. Graph Theory 16 (1992) 459-466, doi: 10.1002/jgt.3190160507. Zbl0778.05074
- [9] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932) 572-579, doi: 10.1090/S0002-9904-1932-05460-X. Zbl0005.14602

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.