Generalized domination, independence and irredudance in graphs
Mieczysław Borowiecki; Danuta Michalak; Elżbieta Sidorowicz
Discussiones Mathematicae Graph Theory (1997)
- Volume: 17, Issue: 1, page 147-153
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Borowiecki and P. Mihók, Hereditary Properties of Graphs, in: Advances in Graph Theory (Vishwa Inter. Publications, 1991) 41-68.
- [2] E.J. Cockayne and S.T. Hedetniemi, Independence graphs, in: Proc. 5th Southeast Conf. Combinatorics, Graph Theory and Computing, Utilitas Mathematica (Winnepeg, 1974) 471-491. Zbl0305.05114
- [3] E.J. Cockayne, S.T. Hedetniemi and D.J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21 (1978) 461-468, doi: 10.4153/CMB-1978-079-5. Zbl0393.05044
- [4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completness (W.H. Freeman, San Francisco, CA, 1979). Zbl0411.68039
- [5] M.A. Henning and H.C. Swart, Bounds on a generalized domination parameter, Quaestiones Math. 13 (1990) 237-253, doi: 10.1080/16073606.1990.9631615. Zbl0709.05029
- [6] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ. 38, Providence, R. I., 1962).