A conjecture on cycle-pancyclism in tournaments
Hortensia Galeana-Sánchez; Sergio Rajsbaum
Discussiones Mathematicae Graph Theory (1998)
- Volume: 18, Issue: 2, page 243-251
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Alspach, Cycles of each length in regular tournaments, Canadian Math. Bull. 10 (1967) 283-286, doi: 10.4153/CMB-1967-028-6. Zbl0148.43602
- [2] J. Bang-Jensen and G. Gutin, Paths, Trees and Cycles in Tournaments, Congressus Numer. 115 (1996) 131-170.
- [3] M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs & Digraphs (Prindle, Weber & Schmidt International Series, 1979). Zbl0403.05027
- [4] J.C. Bermond and C. Thomasen, Cycles in digraphs: A survey, J. Graph Theory 5 (1981) 1-43, doi: 10.1002/jgt.3190050102. Zbl0458.05035
- [5] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments I, Graphs and Combinatorics 11 (1995) 233-243, doi: 10.1007/BF01793009. Zbl0833.05039
- [6] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments II, Graphs and Combinatorics 12 (1996) 9-16, doi: 10.1007/BF01858440. Zbl0844.05047
- [7] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments III, Graphs and Combinatorics 13 (1997) 57-63, doi: 10.1007/BF01202236. Zbl0868.05028
- [8] J.W. Moon, On Subtournaments of a Tournament, Canad. Math. Bull. 9 (1966) 297-301, doi: 10.4153/CMB-1966-038-7. Zbl0141.41204
- [9] J.W. Moon, Topics on Tournaments (Holt, Rinehart and Winston, New York, 1968). Zbl0191.22701
- [10] J.W. Moon, On k-cyclic and Pancyclic Arcs in Strong Tournaments, J. Combinatorics, Information and System Sci. 19 (1994) 207-214. Zbl0860.05039
- [11] D.F. Robinson and L.R. Foulds, Digraphs: Theory and Techniques (Gordon and Breach Science Publishing, 1980). Zbl0484.05034
- [12] Z.-S. Wu, k.-M. Zhang and Y. Zou, A Necessary and Sufficient Condition for Arc-pancyclicity of Tournaments, Sci. Sinica 8 (1981) 915-919.