Some totally modular cordial graphs
Discussiones Mathematicae Graph Theory (2002)
- Volume: 22, Issue: 2, page 247-258
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] W. Bange, A.E. Barkauskas and P.J. Slater, Simply sequential and graceful graphs, in: Proc. 10th S-E. Conf. Comb. Graph Theory and Computing (1979) 155-162. Zbl0427.05056
- [2] W. Bange, A.E. Barkauskas and P.J. Slater, Sequential additive graphs, Discrete Math. 44 (1983) 235-241, doi: 10.1016/0012-365X(83)90187-5. Zbl0508.05057
- [3] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987) 201-208. Zbl0616.05056
- [4] I. Cahit, On cordial and 3-equitable labellings of graphs, Utilitas Mathematica 37 (1990) 189-198. Zbl0714.05053
- [5] J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics 5 (1998) 1-43. Zbl0953.05067
- [6] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canadian Math. Bull. 13 (4) 1970 451-461, doi: 10.4153/CMB-1970-084-1. Zbl0213.26203
- [7] A. Kotzig and A. Rosa, Magic valuations of complete graph (CRM-175, University of Montreal, March 1972).
- [8] A. Kotzig, On well spread sets of integers (CRM-161, University of Montreal, February 1972).
- [9] A. Kotzig, On magic valuations of trichromatic graphs (CRM-148, University of Montreal, December 1971).
- [10] P.J. Slater, On k-sequentially and other numbered graphs, Discrete Math. 34 (1981) 185-193, doi: 10.1016/0012-365X(81)90066-2. Zbl0461.05053
- [11] Z. Szaniszló, k-equitable labellings of cycles and some other graphs, Ars Combin. 37 (1994) 49-63. Zbl0805.05073