Extremum degree sets of irregular oriented graphs and pseudodigraphs
Zyta Dziechcińska-Halamoda; Zofia Majcher; Jerzy Michael; Zdzisław Skupień
Discussiones Mathematicae Graph Theory (2006)
- Volume: 26, Issue: 2, page 317-333
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topZyta Dziechcińska-Halamoda, et al. "Extremum degree sets of irregular oriented graphs and pseudodigraphs." Discussiones Mathematicae Graph Theory 26.2 (2006): 317-333. <http://eudml.org/doc/270494>.
@article{ZytaDziechcińska2006,
abstract = {A digraph in which any two vertices have distinct degree pairs is called irregular. Sets of degree pairs for all irregular oriented graphs (also loopless digraphs and pseudodigraphs) with minimum and maximum size are determined. Moreover, a method of constructing corresponding irregular realizations of those sets is given.},
author = {Zyta Dziechcińska-Halamoda, Zofia Majcher, Jerzy Michael, Zdzisław Skupień},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {irregular digraphs; degree sequences; degree sets},
language = {eng},
number = {2},
pages = {317-333},
title = {Extremum degree sets of irregular oriented graphs and pseudodigraphs},
url = {http://eudml.org/doc/270494},
volume = {26},
year = {2006},
}
TY - JOUR
AU - Zyta Dziechcińska-Halamoda
AU - Zofia Majcher
AU - Jerzy Michael
AU - Zdzisław Skupień
TI - Extremum degree sets of irregular oriented graphs and pseudodigraphs
JO - Discussiones Mathematicae Graph Theory
PY - 2006
VL - 26
IS - 2
SP - 317
EP - 333
AB - A digraph in which any two vertices have distinct degree pairs is called irregular. Sets of degree pairs for all irregular oriented graphs (also loopless digraphs and pseudodigraphs) with minimum and maximum size are determined. Moreover, a method of constructing corresponding irregular realizations of those sets is given.
LA - eng
KW - irregular digraphs; degree sequences; degree sets
UR - http://eudml.org/doc/270494
ER -
References
top- [1] Y. Alavi, G. Chartrand, F.R.K. Chung, P. Erdös, R.L. Graham and O.R. Oel lermann, Highly irregular graphs, J. Graph Theory 11 (1987) 235-249, doi: 10.1002/jgt.3190110214. Zbl0665.05043
- [2] Y. Alavi, J. Liu and J. Wang, Highly irregular digraphs, Discrete Math. 111 (1993) 3-10, doi: 10.1016/0012-365X(93)90134-F. Zbl0786.05038
- [3] G. Chartrand and L. Lesniak, Graphs and Digraphs (Chapman and Hall, Third edition, 1996). Zbl0890.05001
- [4] Z. Dziechcińska-Halamoda, Z. Majcher, J. Michael and Z. Skupień, Large minimal irregular digraphs, Opuscula Mathematica 23 (2003) 21-24. Zbl1093.05505
- [5] M. Gargano, J.W. Kennedy and L.V. Quintas, Irregular digraphs, Congress. Numer. 72 (1990) 223-231. Zbl0693.05038
- [6] J. Górska and Z. Skupień, Near-optimal irregulation of digraphs, submitted.
- [7] J. Górska, Z. Skupień, Z. Majcher and J. Michael, A smallest irregular oriented graph containing a given diregular one, Discrete Math. 286 (2004) 79-88, doi: 10.1016/j.disc.2003.11.049. Zbl1051.05045
- [8] J.S. Li and K. Yang, Degree sequences of oriented graphs, J. Math. Study 35 (2002) 140-146. Zbl1008.05034
- [9] Z. Majcher and J. Michael, Degree sequences of highly irregular graphs, Discrete Math. 164 (1997) 225-236, doi: 10.1016/S0012-365X(97)84782-6. Zbl0870.05071
- [10] Z. Majcher and J. Michael, Highly irregular graphs with extreme numbers of edges, Discrete Math. 164 (1997) 237-242, doi: 10.1016/S0012-365X(96)00056-8. Zbl0883.05082
- [11] Z. Majcher and J. Michael, Degree sequences of digraphs with highly irregular property, Discuss. Math. Graph Theory 18 (1998) 49-61, doi: 10.7151/dmgt.1062. Zbl0915.05063
- [12] Z. Majcher, J. Michael, J. Górska and Z. Skupień, The minimum size of fully irregular oriented graphs, Discrete Math. 236 (2001) 263-272, doi: 10.1016/S0012-365X(00)00446-5. Zbl0998.05028
- [13] A. Selvam, Highly irregular bipartite graphs, Indian J. Pure Appl. Math. 27 (1996) 527-536. Zbl0853.05068
- [14] Z. Skupień, Problems on fully irregular digraphs, in: Z. Skupień, R. Kalinowski, guest eds., Discuss. Math. Graph Theory 19 (1999) 253-255, doi: 10.7151/dmgt.1102. Zbl0954.05503
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.