Extremum degree sets of irregular oriented graphs and pseudodigraphs

Zyta Dziechcińska-Halamoda; Zofia Majcher; Jerzy Michael; Zdzisław Skupień

Discussiones Mathematicae Graph Theory (2006)

  • Volume: 26, Issue: 2, page 317-333
  • ISSN: 2083-5892

Abstract

top
A digraph in which any two vertices have distinct degree pairs is called irregular. Sets of degree pairs for all irregular oriented graphs (also loopless digraphs and pseudodigraphs) with minimum and maximum size are determined. Moreover, a method of constructing corresponding irregular realizations of those sets is given.

How to cite

top

Zyta Dziechcińska-Halamoda, et al. "Extremum degree sets of irregular oriented graphs and pseudodigraphs." Discussiones Mathematicae Graph Theory 26.2 (2006): 317-333. <http://eudml.org/doc/270494>.

@article{ZytaDziechcińska2006,
abstract = {A digraph in which any two vertices have distinct degree pairs is called irregular. Sets of degree pairs for all irregular oriented graphs (also loopless digraphs and pseudodigraphs) with minimum and maximum size are determined. Moreover, a method of constructing corresponding irregular realizations of those sets is given.},
author = {Zyta Dziechcińska-Halamoda, Zofia Majcher, Jerzy Michael, Zdzisław Skupień},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {irregular digraphs; degree sequences; degree sets},
language = {eng},
number = {2},
pages = {317-333},
title = {Extremum degree sets of irregular oriented graphs and pseudodigraphs},
url = {http://eudml.org/doc/270494},
volume = {26},
year = {2006},
}

TY - JOUR
AU - Zyta Dziechcińska-Halamoda
AU - Zofia Majcher
AU - Jerzy Michael
AU - Zdzisław Skupień
TI - Extremum degree sets of irregular oriented graphs and pseudodigraphs
JO - Discussiones Mathematicae Graph Theory
PY - 2006
VL - 26
IS - 2
SP - 317
EP - 333
AB - A digraph in which any two vertices have distinct degree pairs is called irregular. Sets of degree pairs for all irregular oriented graphs (also loopless digraphs and pseudodigraphs) with minimum and maximum size are determined. Moreover, a method of constructing corresponding irregular realizations of those sets is given.
LA - eng
KW - irregular digraphs; degree sequences; degree sets
UR - http://eudml.org/doc/270494
ER -

References

top
  1. [1] Y. Alavi, G. Chartrand, F.R.K. Chung, P. Erdös, R.L. Graham and O.R. Oel lermann, Highly irregular graphs, J. Graph Theory 11 (1987) 235-249, doi: 10.1002/jgt.3190110214. Zbl0665.05043
  2. [2] Y. Alavi, J. Liu and J. Wang, Highly irregular digraphs, Discrete Math. 111 (1993) 3-10, doi: 10.1016/0012-365X(93)90134-F. Zbl0786.05038
  3. [3] G. Chartrand and L. Lesniak, Graphs and Digraphs (Chapman and Hall, Third edition, 1996). Zbl0890.05001
  4. [4] Z. Dziechcińska-Halamoda, Z. Majcher, J. Michael and Z. Skupień, Large minimal irregular digraphs, Opuscula Mathematica 23 (2003) 21-24. Zbl1093.05505
  5. [5] M. Gargano, J.W. Kennedy and L.V. Quintas, Irregular digraphs, Congress. Numer. 72 (1990) 223-231. Zbl0693.05038
  6. [6] J. Górska and Z. Skupień, Near-optimal irregulation of digraphs, submitted. 
  7. [7] J. Górska, Z. Skupień, Z. Majcher and J. Michael, A smallest irregular oriented graph containing a given diregular one, Discrete Math. 286 (2004) 79-88, doi: 10.1016/j.disc.2003.11.049. Zbl1051.05045
  8. [8] J.S. Li and K. Yang, Degree sequences of oriented graphs, J. Math. Study 35 (2002) 140-146. Zbl1008.05034
  9. [9] Z. Majcher and J. Michael, Degree sequences of highly irregular graphs, Discrete Math. 164 (1997) 225-236, doi: 10.1016/S0012-365X(97)84782-6. Zbl0870.05071
  10. [10] Z. Majcher and J. Michael, Highly irregular graphs with extreme numbers of edges, Discrete Math. 164 (1997) 237-242, doi: 10.1016/S0012-365X(96)00056-8. Zbl0883.05082
  11. [11] Z. Majcher and J. Michael, Degree sequences of digraphs with highly irregular property, Discuss. Math. Graph Theory 18 (1998) 49-61, doi: 10.7151/dmgt.1062. Zbl0915.05063
  12. [12] Z. Majcher, J. Michael, J. Górska and Z. Skupień, The minimum size of fully irregular oriented graphs, Discrete Math. 236 (2001) 263-272, doi: 10.1016/S0012-365X(00)00446-5. Zbl0998.05028
  13. [13] A. Selvam, Highly irregular bipartite graphs, Indian J. Pure Appl. Math. 27 (1996) 527-536. Zbl0853.05068
  14. [14] Z. Skupień, Problems on fully irregular digraphs, in: Z. Skupień, R. Kalinowski, guest eds., Discuss. Math. Graph Theory 19 (1999) 253-255, doi: 10.7151/dmgt.1102. Zbl0954.05503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.