Semigroups derived from (Γ,n)-semihypergroups and T-functor

S. Ostadhadi-Dehkordi

Discussiones Mathematicae - General Algebra and Applications (2015)

  • Volume: 35, Issue: 1, page 79-95
  • ISSN: 1509-9415

Abstract

top
The main purpose of this paper is to introduce the concept of (Γ,n)-semihypergroups as a generalization of hypergroups, as a generalization of n-ary hypergroups and obtain an exact covariant functor between the category (Γ,n)-semihypergrous and the category semigroups. Moreover, we introduce and study complete part. Finally, we obtain some new results and some fundamental theorems in this respect.

How to cite

top

S. Ostadhadi-Dehkordi. "Semigroups derived from (Γ,n)-semihypergroups and T-functor." Discussiones Mathematicae - General Algebra and Applications 35.1 (2015): 79-95. <http://eudml.org/doc/270501>.

@article{S2015,
abstract = {The main purpose of this paper is to introduce the concept of (Γ,n)-semihypergroups as a generalization of hypergroups, as a generalization of n-ary hypergroups and obtain an exact covariant functor between the category (Γ,n)-semihypergrous and the category semigroups. Moreover, we introduce and study complete part. Finally, we obtain some new results and some fundamental theorems in this respect.},
author = {S. Ostadhadi-Dehkordi},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {(Γ,n)-semihypergroup; Θ-relation; T-fuctor; fundamental semigroup},
language = {eng},
number = {1},
pages = {79-95},
title = {Semigroups derived from (Γ,n)-semihypergroups and T-functor},
url = {http://eudml.org/doc/270501},
volume = {35},
year = {2015},
}

TY - JOUR
AU - S. Ostadhadi-Dehkordi
TI - Semigroups derived from (Γ,n)-semihypergroups and T-functor
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2015
VL - 35
IS - 1
SP - 79
EP - 95
AB - The main purpose of this paper is to introduce the concept of (Γ,n)-semihypergroups as a generalization of hypergroups, as a generalization of n-ary hypergroups and obtain an exact covariant functor between the category (Γ,n)-semihypergrous and the category semigroups. Moreover, we introduce and study complete part. Finally, we obtain some new results and some fundamental theorems in this respect.
LA - eng
KW - (Γ,n)-semihypergroup; Θ-relation; T-fuctor; fundamental semigroup
UR - http://eudml.org/doc/270501
ER -

References

top
  1. [1] W.E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math. 18 (3) (1966) 411-422. doi: 10.2140/pjm.1966.18.411 Zbl0161.03303
  2. [2] C. Berge, Graphes et Hypergraphes (Dunod, Paris, 1970). Zbl0213.25702
  3. [3] P. Corsini, Prolegomena of Hypergroup Theory, Second Edition (Aviani Editore, 1993). Zbl0785.20032
  4. [4] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Advances in Mathematics, Kluwer Academic Publishers (Dordrecht, 2003). doi: 10.1007/978-1-4757-3714-1 Zbl1027.20051
  5. [5] S.O. Dehkordi and B. Davvaz, A Strong Regular Relation on Γ-Semihyperrings, J. Sci. I.R. Iran. 22 (3) (2011) 257-266. 
  6. [6] S.O. Dehkordi and B. Davvaz, Γ-semihyperrings: Approximations and rough ideals, Bull. Malays. Math. Sci. Soc. 35 (2) (2012) 1035-1047. Zbl1252.16044
  7. [7] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications (International Academic Press USA, 2007). Zbl1204.16033
  8. [8] B. Davvaz and T. Vougiouklis, n-ary hypergroups, Iran. J. Sci. Technol. Trans. A 30 (A2) (2006) 165-174. doi: 10.1080/00927870802466835 
  9. [9] B. Davvaz, W.A. Dudek and T. Vougiouklis, A generalization of n-ary algebraic systems, Comm. Algebra 37 (2009) 1248-1263. doi: 10.1007/BF01180515 Zbl1178.20058
  10. [10] W. Dörnte, Unterschungen uber einen verallgemeinerten gruppenbegriff, Math. Z. 29 (1929) 1-19. doi: 10.1007/BF01180515 Zbl54.0152.01
  11. [11] W.A. Dudek and K. Glazek, Around the Hosszu Gluskin theorem for n-ary groups, Discrete Math. 308 (2008) 4861-4876. doi: 10.1016/j.disc.2007.09.005 Zbl1153.20050
  12. [12] W. A. Dudek and I. Grozdzinska On ideals in regular n-semigroups, Mat. Bilten 29 (1980), 29-30. 
  13. [13] D. Heidari, S.O. Dehkordi and B. Davvaz, Γ-Semihypergroups and their properties, U.P.B. Sci. Bull. (A) 72 (2010) 197-210. Zbl1197.20062
  14. [14] S. Kyuno, On prime Γ-rings, Pacific J. Math. 75 (1) (1978) 185-190. doi: 10.2140/pjm.1978.75.185 Zbl0381.16022
  15. [15] J. Luh, On the theory of simple Γ-rings, Michigan Math. J. 16 (1969) 65-75. doi: 10.1307/mmj/1029000167 
  16. [16] F. Marty, Sur une generalization de la notion de group, 8th Congres Math. Scandinaves (1934), 45-49. 
  17. [17] M.K. Sen, On Γ-semigroups, Proc. of the Int. Conf. on Algebra and it's Appl. (1981) 301-308. New York, Decker Publication. 
  18. [18] M.K. Sen and N.K. Saha, On Γ-semigroup, I. Bull. Cal. Math. Soc. 78 (1986) 180-186. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.