# A lower bound on the independence number of a graph in terms of degrees

Jochen Harant; Ingo Schiermeyer

Discussiones Mathematicae Graph Theory (2006)

- Volume: 26, Issue: 3, page 431-437
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topJochen Harant, and Ingo Schiermeyer. "A lower bound on the independence number of a graph in terms of degrees." Discussiones Mathematicae Graph Theory 26.3 (2006): 431-437. <http://eudml.org/doc/270505>.

@article{JochenHarant2006,

abstract = {For a connected and non-complete graph, a new lower bound on its independence number is proved. It is shown that this bound is realizable by the well known efficient algorithm MIN.},

author = {Jochen Harant, Ingo Schiermeyer},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {independence; stability; algorithm; greedy algorithm},

language = {eng},

number = {3},

pages = {431-437},

title = {A lower bound on the independence number of a graph in terms of degrees},

url = {http://eudml.org/doc/270505},

volume = {26},

year = {2006},

}

TY - JOUR

AU - Jochen Harant

AU - Ingo Schiermeyer

TI - A lower bound on the independence number of a graph in terms of degrees

JO - Discussiones Mathematicae Graph Theory

PY - 2006

VL - 26

IS - 3

SP - 431

EP - 437

AB - For a connected and non-complete graph, a new lower bound on its independence number is proved. It is shown that this bound is realizable by the well known efficient algorithm MIN.

LA - eng

KW - independence; stability; algorithm; greedy algorithm

UR - http://eudml.org/doc/270505

ER -

## References

top- [1] E. Bertram and P. Horak, Lower bounds on the independence number, Geombinatorics V (1996) 93-98. Zbl0972.05024
- [2] Y. Caro, New results on the independence number (Technical Report. Tel-Aviv University, 1979).
- [3] Y. Caro and Z. Tuza, Improved lower bounds on k-independence, J. Graph Theory 15 (1991) 99-107, doi: 10.1002/jgt.3190150110. Zbl0753.68079
- [4] S. Fajtlowicz, On the size of independent sets in graphs, Proc. 9th S-E Conf. on Combinatorics, Graph Theory and Computing, Boca Raton 1978, 269-274. Zbl0434.05044
- [5] S. Fajtlowicz, Independence, clique size and maximum degree, Combinatorica 4 (1984) 35-38, doi: 10.1007/BF02579154. Zbl0576.05025
- [6] J. Harant, A lower bound on the independence number of a graph, Discrete Math. 188 (1998) 239-243, doi: 10.1016/S0012-365X(98)00048-X. Zbl0958.05067
- [7] J. Harant and I. Schiermeyer, On the independence number of a graph in terms of order and size, Discrete Math. 232 (2001) 131-138, doi: 10.1016/S0012-365X(00)00298-3.
- [8] O. Murphy, Lower bounds on the stability number of graphs computed in terms of degrees, Discrete Math. 90 (1991) 207-211, doi: 10.1016/0012-365X(91)90357-8. Zbl0755.05055
- [9] S.M. Selkow, A Probabilistic lower bound on the independence number of graphs, Discrete Math. 132 (1994) 363-365, doi: 10.1016/0012-365X(93)00102-B. Zbl0810.05039
- [10] J.B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983) 83-87, doi: 10.1016/0012-365X(83)90273-X. Zbl0516.05053
- [11] J.B. Shearer, A note on the independence number of triangle-free graphs, II, J. Combin. Theory (B) 53 (1991) 300-307, doi: 10.1016/0095-8956(91)90080-4. Zbl0753.05074
- [12] V.K. Wei, A lower bound on the stability number of a simple graph (Bell Laboratories Technical Memorandum 81-11217-9, Murray Hill, NJ, 1981).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.