Subgraph densities in hypergraphs
Discussiones Mathematicae Graph Theory (2007)
- Volume: 27, Issue: 2, page 281-297
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Academic Press, New York, NY, 1982). Zbl0572.90067
- [2] P. Erdös, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964) 183-190, doi: 10.1007/BF02759942. Zbl0129.39905
- [3] P. Erdös and M. Simonovits, A limit theorem in graph theory, Studia Sci. Mat. Hung. Acad. 1 (1966) 51-57.
- [4] P. Erdös and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087-1091, doi: 10.1090/S0002-9904-1946-08715-7. Zbl0063.01277
- [5] P. Frankl and Z. Füredi, Extremal problems whose solutions are the blow-ups of the small Witt-designs, J. Combin. Theory (A) 52 (1989) 129-147, doi: 10.1016/0097-3165(89)90067-8. Zbl0731.05030
- [6] P. Frankl and V. Rödl, Hypergraphs do not jump, Combinatorica 4 (1984) 149-159, doi: 10.1007/BF02579215. Zbl0663.05047
- [7] P. Frankl, Y. Peng, V. Rödl and J. Talbot, A note on the jumping constant conjecture of Erdös, J. Combin. Theory (B) 97 (2007) 204-216, doi: 10.1016/j.jctb.2006.05.004. Zbl1110.05052
- [8] G. Katona, T. Nemetz and M. Simonovits, On a graph problem of Turán, Mat. Lapok 15 (1964) 228-238. Zbl0138.19402
- [9] T.S. Motzkin and E.G. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canad. J. Math. 17 (1965) 533-540, doi: 10.4153/CJM-1965-053-6. Zbl0129.39902
- [10] Y. Peng, Non-jumping numbers for 4-uniform hypergraphs, Graphs and Combinatorics 23 (2007) 97-110, doi: 10.1007/s00373-006-0689-5. Zbl1115.05045
- [11] Y. Peng, Using Lagrangians of hypergraphs to find non-jumping numbers (I), submitted. Zbl1201.05101
- [12] Y. Peng, Using Lagrangians of hypergraphs to find non-jumping numbers (II), Discrete Math. 307 (2007) 1754-1766, doi: 10.1016/j.disc.2006.09.024. Zbl1128.05029
- [13] J. Talbot, Lagrangians of hypergraphs, Combinatorics, Probability & Computing 11 (2002) 199-216, doi: 10.1017/S0963548301005053. Zbl0998.05049