Derivations in some finite endomorphism semirings
Discussiones Mathematicae - General Algebra and Applications (2012)
- Volume: 32, Issue: 1, page 77-100
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topIvan Dimitrov Trendafilov. "Derivations in some finite endomorphism semirings." Discussiones Mathematicae - General Algebra and Applications 32.1 (2012): 77-100. <http://eudml.org/doc/270558>.
@article{IvanDimitrovTrendafilov2012,
abstract = {The goal of this paper is to provide some basic structure information on derivations in finite semirings.},
author = {Ivan Dimitrov Trendafilov},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {endomorphism semiring; derivations; differential algebra; endomorphism semirings; finite semirings},
language = {eng},
number = {1},
pages = {77-100},
title = {Derivations in some finite endomorphism semirings},
url = {http://eudml.org/doc/270558},
volume = {32},
year = {2012},
}
TY - JOUR
AU - Ivan Dimitrov Trendafilov
TI - Derivations in some finite endomorphism semirings
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2012
VL - 32
IS - 1
SP - 77
EP - 100
AB - The goal of this paper is to provide some basic structure information on derivations in finite semirings.
LA - eng
KW - endomorphism semiring; derivations; differential algebra; endomorphism semirings; finite semirings
UR - http://eudml.org/doc/270558
ER -
References
top- [1] Rings with generalized identities (Marcel Dekker, 1996).
- [2] Classical Finite Transformation Semigroups: An Introduction (Springer-Verlag London Limited, 2009). doi: 10.1007/978-1-84800-281-4 Zbl1166.20056
- [3] Semirings and Their Applications (Kluwer, Dordrecht, 1999). Zbl0947.16034
- [4] Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104-1110. doi: 10.1090/S0002-9939-1957-0095864-2
- [5] Lie and Jordan structures in simple, associative rings, Bull. Amer. Math. Soc. 67 (1961) 517-531. doi: 10.1090/S0002-9904-1961-10666-6 Zbl0107.02704
- [6] Noncommutative Rings (Carus Mathematical Monographs, 1968). Zbl0177.05801
- [7] On the Lie structure of an associative ring, J. Algebra 14 (1970) 561-571. doi: 10.1016/0021-8693(70)90103-1 Zbl0213.04601
- [8] J. Jeẑek, T. Kepka and M. Maròti, The endomorphism semiring of a semilattice, Semigroup Forum 78 (2009) 21-26. doi: 10.1007/s00233-008-9045-9 Zbl1171.16024
- [9] Differential Algebra and Algebraic Groups (Academic Press, New York, London, 1973).
- [10] On finite congruence-simple semirings, J. Algebra 271 (2004) 846-854. doi: 10.1016/jalgebra2003.09.034 Zbl1041.16041
- [11] Differential Algebra (Amer. Math. Soc. Colloq. Publ. 33, New York 1950).
- [12] The endomorphism semiring of a finite chain, Proc. Techn. Univ.-Sofia 61 (2011) 9-18 ISSN 1311-0829
- [13] Endomorphism semirings without zero of a finite chain, Proc. Techn. Univ.-Sofia 61 (2011) 9-18 ISSN 1311-0829
- [14] I. Trendafilov and D. Vladeva, On some subsemigroups of the partial transformation semigroup, in: Appl.Math. in Eng. and Econ.-38th Int. Conf. 2012, G.Venkov(Ed(s)), (AIP Conf. Proc. 1497, 2012) 371-378. doi: 10.1063/1.4766807
- [15] Classification of finite congruence-simple semirings with zero, J. Algebra Appl. 7 (2008) 363-377. doi: 10.1142/S0219498808002862 Zbl1155.16036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.