Derivations in some finite endomorphism semirings

Ivan Dimitrov Trendafilov

Discussiones Mathematicae - General Algebra and Applications (2012)

  • Volume: 32, Issue: 1, page 77-100
  • ISSN: 1509-9415

Abstract

top
The goal of this paper is to provide some basic structure information on derivations in finite semirings.

How to cite

top

Ivan Dimitrov Trendafilov. "Derivations in some finite endomorphism semirings." Discussiones Mathematicae - General Algebra and Applications 32.1 (2012): 77-100. <http://eudml.org/doc/270558>.

@article{IvanDimitrovTrendafilov2012,
abstract = {The goal of this paper is to provide some basic structure information on derivations in finite semirings.},
author = {Ivan Dimitrov Trendafilov},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {endomorphism semiring; derivations; differential algebra; endomorphism semirings; finite semirings},
language = {eng},
number = {1},
pages = {77-100},
title = {Derivations in some finite endomorphism semirings},
url = {http://eudml.org/doc/270558},
volume = {32},
year = {2012},
}

TY - JOUR
AU - Ivan Dimitrov Trendafilov
TI - Derivations in some finite endomorphism semirings
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2012
VL - 32
IS - 1
SP - 77
EP - 100
AB - The goal of this paper is to provide some basic structure information on derivations in finite semirings.
LA - eng
KW - endomorphism semiring; derivations; differential algebra; endomorphism semirings; finite semirings
UR - http://eudml.org/doc/270558
ER -

References

top
  1. [1] Rings with generalized identities (Marcel Dekker, 1996). 
  2. [2] Classical Finite Transformation Semigroups: An Introduction (Springer-Verlag London Limited, 2009). doi: 10.1007/978-1-84800-281-4 Zbl1166.20056
  3. [3] Semirings and Their Applications (Kluwer, Dordrecht, 1999). Zbl0947.16034
  4. [4] Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104-1110. doi: 10.1090/S0002-9939-1957-0095864-2 
  5. [5] Lie and Jordan structures in simple, associative rings, Bull. Amer. Math. Soc. 67 (1961) 517-531. doi: 10.1090/S0002-9904-1961-10666-6 Zbl0107.02704
  6. [6] Noncommutative Rings (Carus Mathematical Monographs, 1968). Zbl0177.05801
  7. [7] On the Lie structure of an associative ring, J. Algebra 14 (1970) 561-571. doi: 10.1016/0021-8693(70)90103-1 Zbl0213.04601
  8. [8] J. Jeẑek, T. Kepka and M. Maròti, The endomorphism semiring of a semilattice, Semigroup Forum 78 (2009) 21-26. doi: 10.1007/s00233-008-9045-9 Zbl1171.16024
  9. [9] Differential Algebra and Algebraic Groups (Academic Press, New York, London, 1973). 
  10. [10] On finite congruence-simple semirings, J. Algebra 271 (2004) 846-854. doi: 10.1016/jalgebra2003.09.034 Zbl1041.16041
  11. [11] Differential Algebra (Amer. Math. Soc. Colloq. Publ. 33, New York 1950). 
  12. [12] The endomorphism semiring of a finite chain, Proc. Techn. Univ.-Sofia 61 (2011) 9-18 ISSN 1311-0829 
  13. [13] Endomorphism semirings without zero of a finite chain, Proc. Techn. Univ.-Sofia 61 (2011) 9-18 ISSN 1311-0829 
  14. [14] I. Trendafilov and D. Vladeva, On some subsemigroups of the partial transformation semigroup, in: Appl.Math. in Eng. and Econ.-38th Int. Conf. 2012, G.Venkov(Ed(s)), (AIP Conf. Proc. 1497, 2012) 371-378. doi: 10.1063/1.4766807 
  15. [15] Classification of finite congruence-simple semirings with zero, J. Algebra Appl. 7 (2008) 363-377. doi: 10.1142/S0219498808002862 Zbl1155.16036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.