On a period of elements of pseudo-BCI-algebras

Grzegorz Dymek

Discussiones Mathematicae - General Algebra and Applications (2015)

  • Volume: 35, Issue: 1, page 21-31
  • ISSN: 1509-9415

Abstract

top
The notions of a period of an element of a pseudo-BCI-algebra and a periodic pseudo-BCI-algebra are defined. Some of their properties and characterizations are given.

How to cite

top

Grzegorz Dymek. "On a period of elements of pseudo-BCI-algebras." Discussiones Mathematicae - General Algebra and Applications 35.1 (2015): 21-31. <http://eudml.org/doc/270585>.

@article{GrzegorzDymek2015,
abstract = {The notions of a period of an element of a pseudo-BCI-algebra and a periodic pseudo-BCI-algebra are defined. Some of their properties and characterizations are given.},
author = {Grzegorz Dymek},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {pseudo-BCI-algebra; period; normal pseudo-BCI-algebra; extension of pseudo-BCI-algebra},
language = {eng},
number = {1},
pages = {21-31},
title = {On a period of elements of pseudo-BCI-algebras},
url = {http://eudml.org/doc/270585},
volume = {35},
year = {2015},
}

TY - JOUR
AU - Grzegorz Dymek
TI - On a period of elements of pseudo-BCI-algebras
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2015
VL - 35
IS - 1
SP - 21
EP - 31
AB - The notions of a period of an element of a pseudo-BCI-algebra and a periodic pseudo-BCI-algebra are defined. Some of their properties and characterizations are given.
LA - eng
KW - pseudo-BCI-algebra; period; normal pseudo-BCI-algebra; extension of pseudo-BCI-algebra
UR - http://eudml.org/doc/270585
ER -

References

top
  1. [1] W.A. Dudek and Y.B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008) 187-190. Zbl1149.06010
  2. [2] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012) 73-90. Zbl1294.06021
  3. [3] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014) 167-187. Zbl1319.06014
  4. [4] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012) 461-474. 
  5. [5] G. Dymek and A. Kozanecka-Dymek, Pseudo-BCI-logic, Bull. Sect. Logic 42 (2013) 33-42. 
  6. [6] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, Proceedings of DMTCS'01: Combinatorics, Computability and Logic (Springer, London, 2001), 97-114. Zbl0986.06018
  7. [7] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-algebras, Abstracts of The Fifth International Conference FSTA 2000 (Slovakia, February 2000), 90-92. 
  8. [8] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV-algebras, The Proceedings The Fourth International Symposium on Economic Informatics, INFOREC Printing House, (Bucharest, Romania, May, 1999), 961-968. Zbl0985.06007
  9. [9] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE (Bucharest, 2008). 
  10. [10] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966) 26-29. doi: 10.3792/pja/1195522171 Zbl0207.29304
  11. [11] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006) 39-46. Zbl1119.03068

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.