# On a period of elements of pseudo-BCI-algebras

Discussiones Mathematicae - General Algebra and Applications (2015)

- Volume: 35, Issue: 1, page 21-31
- ISSN: 1509-9415

## Access Full Article

top## Abstract

top## How to cite

topGrzegorz Dymek. "On a period of elements of pseudo-BCI-algebras." Discussiones Mathematicae - General Algebra and Applications 35.1 (2015): 21-31. <http://eudml.org/doc/270585>.

@article{GrzegorzDymek2015,

abstract = {The notions of a period of an element of a pseudo-BCI-algebra and a periodic pseudo-BCI-algebra are defined. Some of their properties and characterizations are given.},

author = {Grzegorz Dymek},

journal = {Discussiones Mathematicae - General Algebra and Applications},

keywords = {pseudo-BCI-algebra; period; normal pseudo-BCI-algebra; extension of pseudo-BCI-algebra},

language = {eng},

number = {1},

pages = {21-31},

title = {On a period of elements of pseudo-BCI-algebras},

url = {http://eudml.org/doc/270585},

volume = {35},

year = {2015},

}

TY - JOUR

AU - Grzegorz Dymek

TI - On a period of elements of pseudo-BCI-algebras

JO - Discussiones Mathematicae - General Algebra and Applications

PY - 2015

VL - 35

IS - 1

SP - 21

EP - 31

AB - The notions of a period of an element of a pseudo-BCI-algebra and a periodic pseudo-BCI-algebra are defined. Some of their properties and characterizations are given.

LA - eng

KW - pseudo-BCI-algebra; period; normal pseudo-BCI-algebra; extension of pseudo-BCI-algebra

UR - http://eudml.org/doc/270585

ER -

## References

top- [1] W.A. Dudek and Y.B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008) 187-190. Zbl1149.06010
- [2] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012) 73-90. Zbl1294.06021
- [3] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014) 167-187. Zbl1319.06014
- [4] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012) 461-474.
- [5] G. Dymek and A. Kozanecka-Dymek, Pseudo-BCI-logic, Bull. Sect. Logic 42 (2013) 33-42.
- [6] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, Proceedings of DMTCS'01: Combinatorics, Computability and Logic (Springer, London, 2001), 97-114. Zbl0986.06018
- [7] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-algebras, Abstracts of The Fifth International Conference FSTA 2000 (Slovakia, February 2000), 90-92.
- [8] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV-algebras, The Proceedings The Fourth International Symposium on Economic Informatics, INFOREC Printing House, (Bucharest, Romania, May, 1999), 961-968. Zbl0985.06007
- [9] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE (Bucharest, 2008).
- [10] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966) 26-29. doi: 10.3792/pja/1195522171 Zbl0207.29304
- [11] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006) 39-46. Zbl1119.03068

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.