Generalized derivations in prime rings and Banach algebras
Asma Ali; Basudeb Dhara; Shahoor Khan
Discussiones Mathematicae - General Algebra and Applications (2014)
- Volume: 34, Issue: 1, page 125-138
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topAsma Ali, Basudeb Dhara, and Shahoor Khan. "Generalized derivations in prime rings and Banach algebras." Discussiones Mathematicae - General Algebra and Applications 34.1 (2014): 125-138. <http://eudml.org/doc/270601>.
@article{AsmaAli2014,
abstract = {Let R be a prime ring with extended centroid C, F a generalized derivation of R and n ≥ 1, m≥ 1 fixed integers. In this paper we study the situations:
1. $(F(x∘y))^m = (x∘y)ⁿ$ for all x,y ∈ I, where I is a nonzero ideal of R;
2. (F(x∘y))ⁿ=(x∘y)ⁿ for all x,y ∈ I, where I is a nonzero right ideal of R.
Moreover, we also investigate the situation in semiprime rings and Banach algebras.},
author = {Asma Ali, Basudeb Dhara, Shahoor Khan},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {prime ring; generalized derivation; extended centroid; Utumi quotient ring},
language = {eng},
number = {1},
pages = {125-138},
title = {Generalized derivations in prime rings and Banach algebras},
url = {http://eudml.org/doc/270601},
volume = {34},
year = {2014},
}
TY - JOUR
AU - Asma Ali
AU - Basudeb Dhara
AU - Shahoor Khan
TI - Generalized derivations in prime rings and Banach algebras
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2014
VL - 34
IS - 1
SP - 125
EP - 138
AB - Let R be a prime ring with extended centroid C, F a generalized derivation of R and n ≥ 1, m≥ 1 fixed integers. In this paper we study the situations:
1. $(F(x∘y))^m = (x∘y)ⁿ$ for all x,y ∈ I, where I is a nonzero ideal of R;
2. (F(x∘y))ⁿ=(x∘y)ⁿ for all x,y ∈ I, where I is a nonzero right ideal of R.
Moreover, we also investigate the situation in semiprime rings and Banach algebras.
LA - eng
KW - prime ring; generalized derivation; extended centroid; Utumi quotient ring
UR - http://eudml.org/doc/270601
ER -
References
top- [1] N. Argac and H.G. Inceboz, Derivations of prime and semiprime rings, J. Korean Math. Soc. 46 (2009) 997-1005. doi: 10.4134/JKMS.2009.46.5.997. Zbl1185.16044
- [2] M. Ashraf and N. Rehman, On commutativity of rings with derivations, Result. Math. 42 (2002) 3-8. doi: 10.1007/BF03323547. Zbl1038.16021
- [3] K.I. Beidar, Rings of quotients of semiprime rings, Vestnik Moskov. Univ. Ser I Math. Meh. (Engl. Transl:. Moscow Univ. Math. Bull.) 33 (1978) 36-42. Zbl0403.16003
- [4] M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990) 7-16. doi: 10.1090/S0002-9939-1990-1028284-3. Zbl0703.16020
- [5] M. Brešar, On the distance of the composition of the two derivations to be the generalized derivations, Glasgow Math. J. 33 (1991) 89-93. doi: 10.1017/S0017089500008077. Zbl0731.47037
- [6] C.M. Chang, Power central values of derivations on multilinear polynomials, Taiwanese J. Math. 7 (2003) 329-338. Zbl1058.16032
- [7] C.L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988) 723-728. doi: 10.1090/S0002-9939-1988-0947646-4. Zbl0656.16006
- [8] M.N. Daif and H.E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. & Math. Sci. 15 (1992) 205-206. doi: 10.1155/S0161171292000255. Zbl0746.16029
- [9] V. De Filippis and S. Huang, Generalized derivations on semi prime rings, Bull. Korean Math. Soc. 48 (2011) 1253-1259. doi: 10.4134/BKMS.2011.48.6.1253. Zbl1232.16030
- [10] B. Dhara, Remarks on generalized derivations in prime and semiprime rings, Internat. J. Math. & Math. Sc. 2010 (Article ID 646587) 6 pages. Zbl1220.16030
- [11] T.S. Erickson, W.S. Martindale III and J.M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975) 49-63. doi: 10.2140/pjm.1975.60.49. Zbl0355.17005
- [12] C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hung. 14 (1963) 369-371. doi: 10.1007/BF01895723. Zbl0147.28602
- [13] I.N. Herstein, Topics in ring theory (Univ. of Chicago Press, Chicago, 1969). Zbl0232.16001
- [14] S. Huang and B. Davvaz, Generalized derivations of rings and Banach algebras, Comm. Algebra 41 (2013) 1188-1194. doi: 10.1080/00927872.2011.642043.
- [15] S. Huang, On generalized derivations of prime and semiprime rings, Taiwanese J. Math. 16 (2012) 771-776. Zbl1252.16038
- [16] N. Jacobson, Structure of rings (Amer. Math. Soc. Colloq. Pub. 37. Providence, RI: Amer. Math. Soc., 1964).
- [17] B.E. Johnson and A.M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968) 1067-1073. doi: 10.2307/2373290. Zbl0179.18103
- [18] V.K. Kharchenko, Differential identity of prime rings, Algebra and Logic 17 (1978) 155-168. doi: 10.1007/BF01670115. Zbl0423.16011
- [19] B. Kim, On the derivations of semiprime rings and noncommutative Banach algebras, Acta Math. Sinica 16 (2000) 21-28. doi: 10.1007/s101149900020. Zbl0973.16020
- [20] C. Lanski, An engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993) 731-734. doi: 10.1090/S0002-9939-1993-1132851-9. Zbl0821.16037
- [21] T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992) 27-38. Zbl0769.16017
- [22] T.K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999) 4057-4073. doi: 10.1080/00927879908826682. Zbl0946.16026
- [23] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969) 576-584. doi: 10.1016/0021-8693(69)90029-5. Zbl0175.03102
- [24] M. Mathieu, Properties of the product of two derivations of a C*-algebra, Canad. Math. Bull. 32 (1989) 490-497. doi: 10.4153/CMB-1989-072-4. Zbl0641.46037
- [25] M.A. Quadri, M.S. Khan and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J. Pure Appl. Math. 34 (2003) 1393-1396. Zbl1047.16020
- [26] A.M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969) 166-170. doi: 10.1090/S0002-9939-1969-0233207-X.
- [27] I.M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955) 260-264. doi: 10.1007/BF01362370. Zbl0067.35101
- [28] M. Thomas, The image of a derivation is contained in the radical, Ann. Math. 128 (1988) 435-460. doi: 10.2307/1971432. Zbl0681.47016
- [29] J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (1992) 877-884. Zbl0792.16034
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.