Difference labelling of cacti
Discussiones Mathematicae Graph Theory (2003)
- Volume: 23, Issue: 1, page 55-65
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topMartin Sonntag. "Difference labelling of cacti." Discussiones Mathematicae Graph Theory 23.1 (2003): 55-65. <http://eudml.org/doc/270668>.
@article{MartinSonntag2003,
abstract = {A graph G is a difference graph iff there exists S ⊂ IN⁺ such that G is isomorphic to the graph DG(S) = (V,E), where V = S and E = i,j:i,j ∈ V ∧ |i-j| ∈ V.
It is known that trees, cycles, complete graphs, the complete bipartite graphs $K_\{n,n\}$ and $K_\{n,n-1\}$, pyramids and n-sided prisms (n ≥ 4) are difference graphs (cf. [4]). Giving a special labelling algorithm, we prove that cacti with a girth of at least 6 are difference graphs, too.},
author = {Martin Sonntag},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {graph labelling; difference graph; cactus},
language = {eng},
number = {1},
pages = {55-65},
title = {Difference labelling of cacti},
url = {http://eudml.org/doc/270668},
volume = {23},
year = {2003},
}
TY - JOUR
AU - Martin Sonntag
TI - Difference labelling of cacti
JO - Discussiones Mathematicae Graph Theory
PY - 2003
VL - 23
IS - 1
SP - 55
EP - 65
AB - A graph G is a difference graph iff there exists S ⊂ IN⁺ such that G is isomorphic to the graph DG(S) = (V,E), where V = S and E = i,j:i,j ∈ V ∧ |i-j| ∈ V.
It is known that trees, cycles, complete graphs, the complete bipartite graphs $K_{n,n}$ and $K_{n,n-1}$, pyramids and n-sided prisms (n ≥ 4) are difference graphs (cf. [4]). Giving a special labelling algorithm, we prove that cacti with a girth of at least 6 are difference graphs, too.
LA - eng
KW - graph labelling; difference graph; cactus
UR - http://eudml.org/doc/270668
ER -
References
top- [1] D. Bergstrand, F. Harary, K. Hodges, G. Jennings, L. Kuklinski and J. Wiener, The sum number of a complete graph, Bull. Malaysian Math. Soc. (Second Series) 12 (1989) 25-28. Zbl0702.05072
- [2] D. Bergstrand, F. Harary, K. Hodges, G. Jennings, L. Kuklinski and J. Wiener, Product graphs are sum graphs, Math. Mag. 65 (1992) 262-264, doi: 10.2307/2691455. Zbl0785.05075
- [3] G.S. Bloom and S.A. Burr, On autographs which are complements of graphs of low degree, Caribbean J. Math. 3 (1984) 17-28. Zbl0574.05040
- [4] G.S. Bloom, P. Hell and H. Taylor, Collecting autographs: n-node graphs that have n-integer signatures, Annals N.Y. Acad. Sci. 319 (1979) 93-102, doi: 10.1111/j.1749-6632.1979.tb32778.x. Zbl0484.05059
- [5] R.B. Eggleton and S.V. Gervacio, Some properties of difference graphs, Ars Combin. 19 (A) (1985) 113-128. Zbl0562.05026
- [6] M.N. Ellingham, Sum graphs from trees, Ars Combin. 35 (1993) 335-349. Zbl0779.05042
- [7] S.V. Gervacio, Which wheels are proper autographs?, Sea Bull. Math. 7 (1983) 41-50. Zbl0524.05054
- [8] R.J. Gould and V. Rödl, Bounds on the number of isolated vertices in sum graphs, in: Y. Alavi, G. Chartrand, O.R. Ollermann and A.J. Schwenk, ed., Graph Theory, Combinatorics, and Applications 1 (Wiley, New York, 1991), 553-562. Zbl0840.05042
- [9] T. Hao, On sum graphs, J. Combin. Math. and Combin. Computing 6 (1989) 207-212. Zbl0701.05047
- [10] F. Harary, Sum graphs and difference graphs, Congressus Numerantium 72 (1990) 101-108. Zbl0691.05038
- [11] F. Harary, Sum graphs over all the integers, Discrete Math. 124 (1994) 99-105, doi: 10.1016/0012-365X(92)00054-U. Zbl0797.05069
- [12] F. Harary, I.R. Hentzel and D.P. Jacobs, Digitizing sum graphs over the reals, Caribb. J. Math. Comput. Sci. 1, 1 & 2 (1991) 1-4. Zbl0835.05075
- [13] N. Hartsfield and W.F. Smyth, The sum number of complete bipartite graphs, in: R. Rees, ed., Graphs and Matrices (Marcel Dekker, New York, 1992), 205-211. Zbl0791.05090
- [14] N. Hartsfield and W.F. Smyth, A family of sparse graphs of large sum number, Discrete Math. 141 (1995) 163-171, doi: 10.1016/0012-365X(93)E0196-B. Zbl0827.05048
- [15] M. Miller, J. Ryan and W.F. Smyth, The sum number of the cocktail party graph, Bull. Inst. Comb. Appl. 22 (1998) 79-90. Zbl0894.05048
- [16] M. Miller, Slamin, J. Ryan and W.F. Smyth, Labelling wheels for minimum sum number, J. Combin. Math. and Combin. Comput. 28 (1998) 289-297. Zbl0918.05091
- [17] W.F. Smyth, Sum graphs of small sum number, Coll. Math. Soc. János Bolyai, 60. (Sets, Graphs and Numbers, Budapest, 1991) 669-678. Zbl0792.05120
- [18] W.F. Smyth, Sum graphs: new results, new problems, Bulletin of the ICA 2 (1991) 79-81. Zbl0828.05054
- [19] W.F. Smyth, Addendum to: 'Sum graphs: new results, new problems', Bulletin of the ICA 3 (1991) 30. Zbl0828.05055
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.