Algorithmic aspects of total-subdomination in graphs
Laura M. Harris; Johannes H. Hattingh; Michael A. Henning
Discussiones Mathematicae Graph Theory (2006)
- Volume: 26, Issue: 1, page 5-18
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topLaura M. Harris, Johannes H. Hattingh, and Michael A. Henning. "Algorithmic aspects of total-subdomination in graphs." Discussiones Mathematicae Graph Theory 26.1 (2006): 5-18. <http://eudml.org/doc/270679>.
@article{LauraM2006,
abstract = {Let G = (V,E) be a graph and let k ∈ Z⁺. A total k-subdominating function is a function f: V → \{-1,1\} such that for at least k vertices v of G, the sum of the function values of f in the open neighborhood of v is positive. The total k-subdomination number of G is the minimum value of f(V) over all total k-subdominating functions f of G where f(V) denotes the sum of the function values assigned to the vertices under f. In this paper, we present a cubic time algorithm to compute the total k-subdomination number of a tree and also show that the associated decision problem is NP-complete for general graphs.},
author = {Laura M. Harris, Johannes H. Hattingh, Michael A. Henning},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {total k-subdomination; algorithm; tree; total domination; majority domination; signed domination},
language = {eng},
number = {1},
pages = {5-18},
title = {Algorithmic aspects of total-subdomination in graphs},
url = {http://eudml.org/doc/270679},
volume = {26},
year = {2006},
}
TY - JOUR
AU - Laura M. Harris
AU - Johannes H. Hattingh
AU - Michael A. Henning
TI - Algorithmic aspects of total-subdomination in graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2006
VL - 26
IS - 1
SP - 5
EP - 18
AB - Let G = (V,E) be a graph and let k ∈ Z⁺. A total k-subdominating function is a function f: V → {-1,1} such that for at least k vertices v of G, the sum of the function values of f in the open neighborhood of v is positive. The total k-subdomination number of G is the minimum value of f(V) over all total k-subdominating functions f of G where f(V) denotes the sum of the function values assigned to the vertices under f. In this paper, we present a cubic time algorithm to compute the total k-subdomination number of a tree and also show that the associated decision problem is NP-complete for general graphs.
LA - eng
KW - total k-subdomination; algorithm; tree; total domination; majority domination; signed domination
UR - http://eudml.org/doc/270679
ER -
References
top- [1] L.W. Beineke and M.A. Henning, Opinion function on trees, Discrete Math. 167-168 (1997) 127-139, doi: 10.1016/S0012-365X(96)00221-X.
- [2] I. Broere, J.H. Hattingh, M.A. Henning and A.A. McRae, Majority domination in graphs, Discrete Math. 138 (1995) 125-135, doi: 10.1016/0012-365X(94)00194-N. Zbl0820.05037
- [3] G. Chang, S.C. Liaw and H.G. Yeh, k-subdomination in graphs, Discrete Applied Math. 120 (2002) 55-60, doi: 10.1016/S0166-218X(01)00280-3. Zbl1008.05110
- [4] E.J. Cockayne and C. Mynhardt, On a generalisation of signed dominating functions of graphs, Ars Combin. 43 (1996) 235-245. Zbl0881.05060
- [5] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and P.J. Slater, Signed domination in graphs, Graph Theory, Combinatorics and Applications, John Wiley & Sons, Inc. 1 (1995) 311-322. Zbl0842.05051
- [6] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996) 287-293, doi: 10.1016/0012-365X(96)00026-X. Zbl0861.05033
- [7] Z. Furedi and D. Mubayi, Signed domination in regular graphs and set-systems, J. Combin. Theory (B) 76 (1999) 223-239, doi: 10.1006/jctb.1999.1905. Zbl0933.05117
- [8] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979). Zbl0411.68039
- [9] L. Harris and J.H. Hattingh, The algorithmic complexity of certain functional variations of total domination in graphs, Australasian J. Combin. 29 (2004) 143-156. Zbl1084.05049
- [10] L. Harris, J.H. Hattingh and M.A. Henning, Total k-subdominating functions on graphs, submitted for publication. Zbl1097.05031
- [11] J.H. Hattingh, M.A. Henning and P.J. Slater, The algorithmic complexity of signed domination in graphs, Australasian J. Combin. 12 (1995) 101-112. Zbl0835.68089
- [12] M.A. Henning, Domination in regular graphs, Ars Combin. 43 (1996) 263-271. Zbl0881.05101
- [13] M.A. Henning, Dominating functions in graphs, Domination in Graphs: Volume II (Marcel-Dekker, Inc., 1998) 31-62. Zbl0891.05044
- [14] M.A. Henning, Signed total domination in graphs, to appear in Discrete Math.
- [15] M.A. Henning and H. Hind, Strict open majority functions in Graphs, J. Graph Theory 28 (1998) 49-56, doi: 10.1002/(SICI)1097-0118(199805)28:1<49::AID-JGT6>3.0.CO;2-F Zbl0919.05032
- [16] M.A. Henning and P.J. Slater, Inequalities relating domination parameters in cubic graphs, Discrete Math. 158 (1996) 87-98, doi: 10.1016/0012-365X(96)00025-8. Zbl0858.05058
- [17] P. Lam and B. Wei, On the total domination number of graphs, submitted for publication.
- [18] J. Matousek, On the signed domination in graphs, Combinatoria 20 (2000) 103-108, doi: 10.1007/s004930070034. Zbl0949.05058
- [19] X. Yang, X. Huang and Q. Hou, On graphs with equal signed and majority domination number, manuscript (personal communication by X. Yang).
- [20] H. Yeh and G.J. Chang, Algorithmic aspects of majority domination, Taiwanese J. Math. 1 (1997) 343-350. Zbl0882.05114
- [21] B. Zelinka, Some remarks on domination in cubic graphs, Discrete Math. 158 (1996) 249-255, doi: 10.1016/0012-365X(94)00324-C. Zbl0861.05034
- [22] B. Zelinka, Signed total domination number of a graph, Czechoslovak Math. J. 51 (2001) 225-229, doi: 10.1023/A:1013782511179. Zbl0977.05096
- [23] Z. Zhang, B. Xu, Y. Li and L. Liu, A note on the lower bounds of signed domination number of a graph, Discrete Math. 195 (1999) 295-298, doi: 10.1016/S0012-365X(98)00189-7. Zbl0928.05052
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.