Short paths in 3-uniform quasi-random hypergraphs
Discussiones Mathematicae Graph Theory (2004)
- Volume: 24, Issue: 3, page 469-484
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Bollobás, Random Graphs (Academic Press, London, 1985).
- [2] Y. Dementieva, Equivalent Conditions for Hypergraph Regularity (Ph.D. Thesis, Emory University, 2001).
- [3] P. Frankl and V. Rödl, Extremal problems on set systems, Random Structures and Algorithms 20 (2002) 131-164, doi: 10.1002/rsa.10017. Zbl0995.05141
- [4] S. Janson, T. Łuczak and A. Ruciński, Random Graphs (Wiley, New York, 2000), doi: 10.1002/9781118032718.
- [5] J. Komlós, G.N. Sárközy and E. Szemerédi, On the square of a Hamiltonian cycle in dense graphs, Random Structures and Algorithms 9 (1996) 193-211, doi: 10.1002/(SICI)1098-2418(199608/09)9:1/2<193::AID-RSA12>3.0.CO;2-P Zbl0864.05063
- [6] J. Komlós, G.N. Sárközy and E. Szemerédi, On the Pósa-Seymour conjecture, J. Graph Theory 29 (1998) 167-176. Zbl0919.05042
- [7] J. Polcyn, V. Rödl, A. Ruciński and E. Szemerédi, Short paths in quasi-random triple systems with sparse underlying graphs, in preparation. Zbl1091.05009
- [8] B. Nagle and V. Rödl, Regularity properties for triple systems, Random Structures and Algorithms 23 (2003) 264-332, doi: 10.1002/rsa.10094. Zbl1026.05061
- [9] V. Rödl, A. Ruciński and E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, submitted. Zbl1082.05057
- [10] E. Szemerédi, Regular partitions of graphs, in: Problèmes en Combinatoire et Théorie des Graphes, Proc. Colloque Inter. CNRS, (J.-C. Bermond, J.-C. Fournier, M. Las Vergnas, D. Sotteau, eds), (1978) 399-401. Zbl0413.05055