Some remarks on Prüfer modules

S. Ebrahimi Atani; S. Dolati Pishhesari; M. Khoramdel

Discussiones Mathematicae - General Algebra and Applications (2013)

  • Volume: 33, Issue: 2, page 121-128
  • ISSN: 1509-9415

Abstract

top
We provide several characterizations and investigate properties of Prüfer modules. In fact, we study the connections of such modules with their endomorphism rings. We also prove that for any Prüfer module M, the forcing linearity number of M, fln(M), belongs to {0,1}.

How to cite

top

S. Ebrahimi Atani, S. Dolati Pishhesari, and M. Khoramdel. "Some remarks on Prüfer modules." Discussiones Mathematicae - General Algebra and Applications 33.2 (2013): 121-128. <http://eudml.org/doc/270705>.

@article{S2013,
abstract = {We provide several characterizations and investigate properties of Prüfer modules. In fact, we study the connections of such modules with their endomorphism rings. We also prove that for any Prüfer module M, the forcing linearity number of M, fln(M), belongs to \{0,1\}.},
author = {S. Ebrahimi Atani, S. Dolati Pishhesari, M. Khoramdel},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {Prüfer modules; Prüfer domains; invertible submodules; duo modules; forcing linearity number},
language = {eng},
number = {2},
pages = {121-128},
title = {Some remarks on Prüfer modules},
url = {http://eudml.org/doc/270705},
volume = {33},
year = {2013},
}

TY - JOUR
AU - S. Ebrahimi Atani
AU - S. Dolati Pishhesari
AU - M. Khoramdel
TI - Some remarks on Prüfer modules
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2013
VL - 33
IS - 2
SP - 121
EP - 128
AB - We provide several characterizations and investigate properties of Prüfer modules. In fact, we study the connections of such modules with their endomorphism rings. We also prove that for any Prüfer module M, the forcing linearity number of M, fln(M), belongs to {0,1}.
LA - eng
KW - Prüfer modules; Prüfer domains; invertible submodules; duo modules; forcing linearity number
UR - http://eudml.org/doc/270705
ER -

References

top
  1. [1] M. Alkan, B. Saraç and Y. Tiraş, Dedekind Modules, Comm. Alg. 33(5) (2005) 1617-1626. doi: 10.1081/AGB-200061007. 
  2. [2] D.D. Anderson and D.F. Anderson, Cancellation modules and related modules, in: Lect. Notes Pure Appl. Math, 220 (Ed(s)), (Dekker, New York, 2001) 13-25. Zbl1037.13005
  3. [3] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Alg. 16(4) (1988) 755-779. doi: 10.1080/00927878808823601. Zbl0642.13002
  4. [4] J. Hausen and J.A. Johnson, Centralizer near-rings that are rings, J. Austral. Soc. (Series A) 59 (1995) 173-183. doi: 10.1017/S144678870003857X. Zbl0852.16032
  5. [5] I. Kaplansky, Commutative Rings (Boston: Allyn and Bacon, 1970). Zbl0203.34601
  6. [6] M. Khoramdel and S. Dolati Pish Hesari, Some notes on Dedekind modules, Hacettepe Journal of Mathematics and Statistics 40(5) (2011) 627-634. 
  7. [7] H. Matsumura, Commutative Ring Theory (Cambridge: Cambridge University Press, 1989). doi: 10.1017/CBO9781139171762. 
  8. [8] C.J. Maxson and J.H. Meyer, Forcing linearity numbers, J. Algebra 223 (2000) 190-207. doi: 10.1006/jabr.1999.7991. Zbl0953.16034
  9. [9] A.G. Naoum and F.H. Al-Alwan, Dedekind modules, Comm. Alg. 24(2) (1996) 397-412. doi: 10.1080/00927879608825576. Zbl0858.13008
  10. [10] A.G. Naoum, On the ring of endomorphisms of finitely generated multiplication modules, Period. Math. Hungar. 21(3) (1990) 249-255. doi: 10.1007/BF02651092. Zbl0739.13004
  11. [11] A.Ç. Özcan, A. Harmanci and P.F. Smith, Duo modules, Glasg. Math. J. 48 (2006) 533-545. doi: 10.1017/S0017089506003260. Zbl1116.16003
  12. [12] J.J. Rotman, An Introduction to Homological Algebra (Academic Press, New York, 1979). Zbl0441.18018
  13. [13] B. Saraç, P.F. Smith and Y. Tiraş, On Dedekind Modules, Comm. Alg. 35(5) (2007) 1533-1538. doi: 10.1080/00927870601169051. Zbl1113.13011
  14. [14] J. Sanwong, Forcing Linearity Numbers for Multiplication Modules, Comm. Alg. 34 (2006) 4591-4596. doi: 10.1080/00927870600936740. Zbl1120.16006
  15. [15] P.F. Smith, Multiplication Modules and Projective Modules, Period. Math. Hungar. 29(2) (1994) 163-168. doi: 10.1007/BF01876873. Zbl0824.13008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.