Some remarks on Prüfer modules
S. Ebrahimi Atani; S. Dolati Pishhesari; M. Khoramdel
Discussiones Mathematicae - General Algebra and Applications (2013)
- Volume: 33, Issue: 2, page 121-128
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topS. Ebrahimi Atani, S. Dolati Pishhesari, and M. Khoramdel. "Some remarks on Prüfer modules." Discussiones Mathematicae - General Algebra and Applications 33.2 (2013): 121-128. <http://eudml.org/doc/270705>.
@article{S2013,
abstract = {We provide several characterizations and investigate properties of Prüfer modules. In fact, we study the connections of such modules with their endomorphism rings. We also prove that for any Prüfer module M, the forcing linearity number of M, fln(M), belongs to \{0,1\}.},
author = {S. Ebrahimi Atani, S. Dolati Pishhesari, M. Khoramdel},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {Prüfer modules; Prüfer domains; invertible submodules; duo modules; forcing linearity number},
language = {eng},
number = {2},
pages = {121-128},
title = {Some remarks on Prüfer modules},
url = {http://eudml.org/doc/270705},
volume = {33},
year = {2013},
}
TY - JOUR
AU - S. Ebrahimi Atani
AU - S. Dolati Pishhesari
AU - M. Khoramdel
TI - Some remarks on Prüfer modules
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2013
VL - 33
IS - 2
SP - 121
EP - 128
AB - We provide several characterizations and investigate properties of Prüfer modules. In fact, we study the connections of such modules with their endomorphism rings. We also prove that for any Prüfer module M, the forcing linearity number of M, fln(M), belongs to {0,1}.
LA - eng
KW - Prüfer modules; Prüfer domains; invertible submodules; duo modules; forcing linearity number
UR - http://eudml.org/doc/270705
ER -
References
top- [1] M. Alkan, B. Saraç and Y. Tiraş, Dedekind Modules, Comm. Alg. 33(5) (2005) 1617-1626. doi: 10.1081/AGB-200061007.
- [2] D.D. Anderson and D.F. Anderson, Cancellation modules and related modules, in: Lect. Notes Pure Appl. Math, 220 (Ed(s)), (Dekker, New York, 2001) 13-25. Zbl1037.13005
- [3] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Alg. 16(4) (1988) 755-779. doi: 10.1080/00927878808823601. Zbl0642.13002
- [4] J. Hausen and J.A. Johnson, Centralizer near-rings that are rings, J. Austral. Soc. (Series A) 59 (1995) 173-183. doi: 10.1017/S144678870003857X. Zbl0852.16032
- [5] I. Kaplansky, Commutative Rings (Boston: Allyn and Bacon, 1970). Zbl0203.34601
- [6] M. Khoramdel and S. Dolati Pish Hesari, Some notes on Dedekind modules, Hacettepe Journal of Mathematics and Statistics 40(5) (2011) 627-634.
- [7] H. Matsumura, Commutative Ring Theory (Cambridge: Cambridge University Press, 1989). doi: 10.1017/CBO9781139171762.
- [8] C.J. Maxson and J.H. Meyer, Forcing linearity numbers, J. Algebra 223 (2000) 190-207. doi: 10.1006/jabr.1999.7991. Zbl0953.16034
- [9] A.G. Naoum and F.H. Al-Alwan, Dedekind modules, Comm. Alg. 24(2) (1996) 397-412. doi: 10.1080/00927879608825576. Zbl0858.13008
- [10] A.G. Naoum, On the ring of endomorphisms of finitely generated multiplication modules, Period. Math. Hungar. 21(3) (1990) 249-255. doi: 10.1007/BF02651092. Zbl0739.13004
- [11] A.Ç. Özcan, A. Harmanci and P.F. Smith, Duo modules, Glasg. Math. J. 48 (2006) 533-545. doi: 10.1017/S0017089506003260. Zbl1116.16003
- [12] J.J. Rotman, An Introduction to Homological Algebra (Academic Press, New York, 1979). Zbl0441.18018
- [13] B. Saraç, P.F. Smith and Y. Tiraş, On Dedekind Modules, Comm. Alg. 35(5) (2007) 1533-1538. doi: 10.1080/00927870601169051. Zbl1113.13011
- [14] J. Sanwong, Forcing Linearity Numbers for Multiplication Modules, Comm. Alg. 34 (2006) 4591-4596. doi: 10.1080/00927870600936740. Zbl1120.16006
- [15] P.F. Smith, Multiplication Modules and Projective Modules, Period. Math. Hungar. 29(2) (1994) 163-168. doi: 10.1007/BF01876873. Zbl0824.13008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.