A new upper bound for the chromatic number of a graph
Discussiones Mathematicae Graph Theory (2007)
- Volume: 27, Issue: 1, page 137-142
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topIngo Schiermeyer. "A new upper bound for the chromatic number of a graph." Discussiones Mathematicae Graph Theory 27.1 (2007): 137-142. <http://eudml.org/doc/270707>.
@article{IngoSchiermeyer2007,
abstract = {Let G be a graph of order n with clique number ω(G), chromatic number χ(G) and independence number α(G). We show that χ(G) ≤ [(n+ω+1-α)/2]. Moreover, χ(G) ≤ [(n+ω-α)/2], if either ω + α = n + 1 and G is not a split graph or α + ω = n - 1 and G contains no induced $K_\{ω+3\}- C₅$.},
author = {Ingo Schiermeyer},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {Vertex colouring; chromatic number; upper bound; vertex colouring; chromatic number upper bound; clique number},
language = {eng},
number = {1},
pages = {137-142},
title = {A new upper bound for the chromatic number of a graph},
url = {http://eudml.org/doc/270707},
volume = {27},
year = {2007},
}
TY - JOUR
AU - Ingo Schiermeyer
TI - A new upper bound for the chromatic number of a graph
JO - Discussiones Mathematicae Graph Theory
PY - 2007
VL - 27
IS - 1
SP - 137
EP - 142
AB - Let G be a graph of order n with clique number ω(G), chromatic number χ(G) and independence number α(G). We show that χ(G) ≤ [(n+ω+1-α)/2]. Moreover, χ(G) ≤ [(n+ω-α)/2], if either ω + α = n + 1 and G is not a split graph or α + ω = n - 1 and G contains no induced $K_{ω+3}- C₅$.
LA - eng
KW - Vertex colouring; chromatic number; upper bound; vertex colouring; chromatic number upper bound; clique number
UR - http://eudml.org/doc/270707
ER -
References
top- [1] B. Baetz and D.R. Wood, Brooks' Vertex Colouring Theorem in Linear Time, TR CS-AAG-2001-05, Basser Dep. Comput. Sci., Univ. Sydney, (2001) 4 pages.
- [2] C. Berge, Les problèms de coloration en théorie des graphes, Publ. Inst. Statist. Univ. Paris 9 (1960) 123-160. Zbl0103.16201
- [3] C. Berge, Perfect graphs, in: Six papers on graph theory, Indian Statistical Institute, Calcutta (1963), 1-21.
- [4] R.C. Brigham and R.D. Dutton, A Compilation of Relations between Graph Invariants, Networks 15 (1985) 73-107, doi: 10.1002/net.3230150108. Zbl0579.05059
- [5] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X. Zbl0027.26403
- [6] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, Progress on perfect graphs, Math. Program. (B) 97 (2003) 405-422. Zbl1028.05035
- [7] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. Math. (2) 164 (2006) 51-229, doi: 10.4007/annals.2006.164.51. Zbl1112.05042
- [8] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vusković, Recognizing Berge Graphs, Combinatorica 25 (2005) 143-186, doi: 10.1007/s00493-005-0012-8. Zbl1089.05027
- [9] P. Erdös, Graph theory and probability, Canad. J. Math. 11 (1959) 34-38, doi: 10.4153/CJM-1959-003-9.
- [10] J.L. Gross and J. Yellen, Handbook of Graph Theory (CRC Press, 2004). Zbl1036.05001
- [11] L. Lovász, Three short proofs in graph theory, J. Combin. Theory (B) 19 (1975) 269-271, doi: 10.1016/0095-8956(75)90089-1. Zbl0322.05142
- [12] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177, doi: 10.2307/2306658. Zbl0070.18503
- [13] B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs - a survey, Graphs and Combinatorics 20 (2004) 1-40, doi: 10.1007/s00373-003-0540-1.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.