A new upper bound for the chromatic number of a graph

Ingo Schiermeyer

Discussiones Mathematicae Graph Theory (2007)

  • Volume: 27, Issue: 1, page 137-142
  • ISSN: 2083-5892

Abstract

top
Let G be a graph of order n with clique number ω(G), chromatic number χ(G) and independence number α(G). We show that χ(G) ≤ [(n+ω+1-α)/2]. Moreover, χ(G) ≤ [(n+ω-α)/2], if either ω + α = n + 1 and G is not a split graph or α + ω = n - 1 and G contains no induced K ω + 3 - C .

How to cite

top

Ingo Schiermeyer. "A new upper bound for the chromatic number of a graph." Discussiones Mathematicae Graph Theory 27.1 (2007): 137-142. <http://eudml.org/doc/270707>.

@article{IngoSchiermeyer2007,
abstract = {Let G be a graph of order n with clique number ω(G), chromatic number χ(G) and independence number α(G). We show that χ(G) ≤ [(n+ω+1-α)/2]. Moreover, χ(G) ≤ [(n+ω-α)/2], if either ω + α = n + 1 and G is not a split graph or α + ω = n - 1 and G contains no induced $K_\{ω+3\}- C₅$.},
author = {Ingo Schiermeyer},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {Vertex colouring; chromatic number; upper bound; vertex colouring; chromatic number upper bound; clique number},
language = {eng},
number = {1},
pages = {137-142},
title = {A new upper bound for the chromatic number of a graph},
url = {http://eudml.org/doc/270707},
volume = {27},
year = {2007},
}

TY - JOUR
AU - Ingo Schiermeyer
TI - A new upper bound for the chromatic number of a graph
JO - Discussiones Mathematicae Graph Theory
PY - 2007
VL - 27
IS - 1
SP - 137
EP - 142
AB - Let G be a graph of order n with clique number ω(G), chromatic number χ(G) and independence number α(G). We show that χ(G) ≤ [(n+ω+1-α)/2]. Moreover, χ(G) ≤ [(n+ω-α)/2], if either ω + α = n + 1 and G is not a split graph or α + ω = n - 1 and G contains no induced $K_{ω+3}- C₅$.
LA - eng
KW - Vertex colouring; chromatic number; upper bound; vertex colouring; chromatic number upper bound; clique number
UR - http://eudml.org/doc/270707
ER -

References

top
  1. [1] B. Baetz and D.R. Wood, Brooks' Vertex Colouring Theorem in Linear Time, TR CS-AAG-2001-05, Basser Dep. Comput. Sci., Univ. Sydney, (2001) 4 pages. 
  2. [2] C. Berge, Les problèms de coloration en théorie des graphes, Publ. Inst. Statist. Univ. Paris 9 (1960) 123-160. Zbl0103.16201
  3. [3] C. Berge, Perfect graphs, in: Six papers on graph theory, Indian Statistical Institute, Calcutta (1963), 1-21. 
  4. [4] R.C. Brigham and R.D. Dutton, A Compilation of Relations between Graph Invariants, Networks 15 (1985) 73-107, doi: 10.1002/net.3230150108. Zbl0579.05059
  5. [5] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X. Zbl0027.26403
  6. [6] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, Progress on perfect graphs, Math. Program. (B) 97 (2003) 405-422. Zbl1028.05035
  7. [7] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. Math. (2) 164 (2006) 51-229, doi: 10.4007/annals.2006.164.51. Zbl1112.05042
  8. [8] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vusković, Recognizing Berge Graphs, Combinatorica 25 (2005) 143-186, doi: 10.1007/s00493-005-0012-8. Zbl1089.05027
  9. [9] P. Erdös, Graph theory and probability, Canad. J. Math. 11 (1959) 34-38, doi: 10.4153/CJM-1959-003-9. 
  10. [10] J.L. Gross and J. Yellen, Handbook of Graph Theory (CRC Press, 2004). Zbl1036.05001
  11. [11] L. Lovász, Three short proofs in graph theory, J. Combin. Theory (B) 19 (1975) 269-271, doi: 10.1016/0095-8956(75)90089-1. Zbl0322.05142
  12. [12] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177, doi: 10.2307/2306658. Zbl0070.18503
  13. [13] B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs - a survey, Graphs and Combinatorics 20 (2004) 1-40, doi: 10.1007/s00373-003-0540-1. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.