# Spectral integral variation of trees

Discussiones Mathematicae Graph Theory (2006)

- Volume: 26, Issue: 1, page 49-58
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topYi Wang, and Yi-Zheng Fan. "Spectral integral variation of trees." Discussiones Mathematicae Graph Theory 26.1 (2006): 49-58. <http://eudml.org/doc/270715>.

@article{YiWang2006,

abstract = {In this paper, we determine all trees with the property that adding a particular edge will result in exactly two Laplacian eigenvalues increasing respectively by 1 and the other Laplacian eigenvalues remaining fixed. We also investigate a situation in which the algebraic connectivity is one of the changed eigenvalues.},

author = {Yi Wang, Yi-Zheng Fan},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {tree; Laplacian eigenvalues; spectral integral variation; algebraic connectivity},

language = {eng},

number = {1},

pages = {49-58},

title = {Spectral integral variation of trees},

url = {http://eudml.org/doc/270715},

volume = {26},

year = {2006},

}

TY - JOUR

AU - Yi Wang

AU - Yi-Zheng Fan

TI - Spectral integral variation of trees

JO - Discussiones Mathematicae Graph Theory

PY - 2006

VL - 26

IS - 1

SP - 49

EP - 58

AB - In this paper, we determine all trees with the property that adding a particular edge will result in exactly two Laplacian eigenvalues increasing respectively by 1 and the other Laplacian eigenvalues remaining fixed. We also investigate a situation in which the algebraic connectivity is one of the changed eigenvalues.

LA - eng

KW - tree; Laplacian eigenvalues; spectral integral variation; algebraic connectivity

UR - http://eudml.org/doc/270715

ER -

## References

top- [1] D.M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications (2nd Edn., VEB Deutscher Verlag d. Wiss., Berlin, 1982). Zbl0824.05046
- [2] Yi-Zheng Fan, On spectral integral variations of graph, Linear and Multilinear Algebra 50 (2002) 133-142, doi: 10.1080/03081080290019513. Zbl0995.05094
- [3] Yi-Zheng Fan, Spectral integral variations of degree maximal graphs, Linear and Multilinear Algebra 52 (2003) 147-154.
- [4] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305.
- [5] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975) 619-633. Zbl0437.15004
- [6] R. Grone, R. Merris and V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238, doi: 10.1137/0611016. Zbl0733.05060
- [7] R. Grone and R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math. 7 (1994) 229-237, doi: 10.1137/S0895480191222653. Zbl0795.05092
- [8] F. Harary and A.J. Schwenk, Which graphs have integral spectra? in: Graphs and Combinatorics, R.A. Bari and F. Harray eds. (Springer-Verlag, 1974), 45-51, doi: 10.1007/BFb0066434.
- [9] S. Kirkland, A characterization of spectrum integral variation in two places for Laplacian matrices, Linear and Multilinear Algebra 52 (2004) 79-98, doi: 10.1080/0308108031000122506. Zbl1051.05060
- [10] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197/198 (1994) 143-176, doi: 10.1016/0024-3795(94)90486-3. Zbl0802.05053
- [11] R. Merris, Degree maximal graphs are Laplacian integral, Linear Algebra Appl. 199 (1994) 381-389, doi: 10.1016/0024-3795(94)90361-1. Zbl0795.05091
- [12] B. Mohar, The Laplacian spectrum of graphs, in: Y. Alavi et al. (eds.), Graph Theory, Combinatorics, and Applications (Wiley, New York, 1991) 871-898. Zbl0840.05059
- [13] W. So, Rank one perturbation and its application to the Laplacian spectrum of graphs, Linear and Multilinear Algebra 46 (1999) 193-198, doi: 10.1080/03081089908818613. Zbl0935.05065

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.