Order unicyclic graphs according to spectral radius of unoriented laplacian matrix

Yi-Zheng Fan; Song Wu

Discussiones Mathematicae Graph Theory (2008)

  • Volume: 28, Issue: 3, page 487-499
  • ISSN: 2083-5892

Abstract

top
The spectral radius of a graph is defined by that of its unoriented Laplacian matrix. In this paper, we determine the unicyclic graphs respectively with the third and the fourth largest spectral radius among all unicyclic graphs of given order.

How to cite

top

Yi-Zheng Fan, and Song Wu. "Order unicyclic graphs according to spectral radius of unoriented laplacian matrix." Discussiones Mathematicae Graph Theory 28.3 (2008): 487-499. <http://eudml.org/doc/270719>.

@article{Yi2008,
abstract = {The spectral radius of a graph is defined by that of its unoriented Laplacian matrix. In this paper, we determine the unicyclic graphs respectively with the third and the fourth largest spectral radius among all unicyclic graphs of given order.},
author = {Yi-Zheng Fan, Song Wu},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {unicyclic graph; Laplacian matrix; spectral radius},
language = {eng},
number = {3},
pages = {487-499},
title = {Order unicyclic graphs according to spectral radius of unoriented laplacian matrix},
url = {http://eudml.org/doc/270719},
volume = {28},
year = {2008},
}

TY - JOUR
AU - Yi-Zheng Fan
AU - Song Wu
TI - Order unicyclic graphs according to spectral radius of unoriented laplacian matrix
JO - Discussiones Mathematicae Graph Theory
PY - 2008
VL - 28
IS - 3
SP - 487
EP - 499
AB - The spectral radius of a graph is defined by that of its unoriented Laplacian matrix. In this paper, we determine the unicyclic graphs respectively with the third and the fourth largest spectral radius among all unicyclic graphs of given order.
LA - eng
KW - unicyclic graph; Laplacian matrix; spectral radius
UR - http://eudml.org/doc/270719
ER -

References

top
  1. [1] R.B. Bapat, J.W. Grossmana and D.M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear Multilinear Algebra 46 (1999) 299-312, doi: 10.1080/03081089908818623. Zbl0940.05042
  2. [2] D. Cvetković, P. Rowlinson and S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171, doi: 10.1016/j.laa.2007.01.009. Zbl1113.05061
  3. [3] Y.-Z. Fan, On spectral integral variations of mixed graph, Linear Algebra Appl. 374 (2003) 307-316, doi: 10.1016/S0024-3795(03)00575-5. Zbl1026.05076
  4. [4] Y.-Z. Fan, Largest eigenvalue of a unicyclic mixed graph, Appl. Math. J. Chinese Univ. (B) 19 (2004) 140-148, doi: 10.1007/s11766-004-0047-4. Zbl1059.05072
  5. [5] Y.-Z. Fan, On the least eigenvalue of a unicyclic mixed graph, Linear Multilinear Algebra 53 (2005) 97-113, doi: 10.1080/03081080410001681540. Zbl1062.05090
  6. [6] Y.-Z. Fan, H.-Y. Hong, S.-C. Gong and Y. Wang, Order unicyclic mixed graphs by spectral radius, Australasian J. Combin. 37 (2007) 305-316. Zbl1122.05059
  7. [7] Y.-Z. Fan, B.-S. Tam and J. Zhou, Maximizing spectral radius of unoriented Laplacian matrix over bicyclic graphs of a 798 given order, Linear and Multilinear Algebra (2007),, doi: 10.1080/03081080701306589. 
  8. [8] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305. 
  9. [9] J.W. Grossman, D.M. Kulkarni and I.E. Schochetman, Algebraic Graph Theory Without Orientation, Linear Algebra Appl. 212/213 (1994) 289-307, doi: 10.1016/0024-3795(94)90407-3. Zbl0817.05047
  10. [10] Y.-P. Hou, J.-S. Li and Y.-L. Pan, On the Laplacian eigenvalues of signed graphs, Linear Multilinear Algebra 51 (2003) 21-30, doi: 10.1080/0308108031000053611. Zbl1020.05044
  11. [11] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197/198 (1998) 143-176, doi: 10.1016/0024-3795(94)90486-3. Zbl0802.05053
  12. [12] B. Mohar, Some applications of Laplacian eigenvalues of graphs, in: Graph Symmetry (G. Hahn and G. Sabidussi Eds (Kluwer Academic Publishers, Dordrecht, 1997) 225-275. Zbl0883.05096
  13. [13] B.-S. Tam, Y.-Z. Fan and J. Zhou, Unoriented Laplacian maximizing graphs are degree maximal, Linear Algebra Appl. (2008), doi: 10.1016/j.laa.2008.04.002. Zbl1149.05034
  14. [14] X.-D. Zhang and J.-S. Li, The Laplacian spectrum of a mixed graph, Linear Algebra Appl. 353 (2002) 11-20, doi: 10.1016/S0024-3795(01)00538-9. Zbl1003.05073
  15. [15] X.-D. Zhang and Rong Luo, The Laplacian eigenvalues of mixed graphs, Linear Algebra Appl. 362 (2003) 109-119, doi: 10.1016/S0024-3795(02)00509-8. Zbl1017.05078

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.