Order unicyclic graphs according to spectral radius of unoriented laplacian matrix
Discussiones Mathematicae Graph Theory (2008)
- Volume: 28, Issue: 3, page 487-499
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topYi-Zheng Fan, and Song Wu. "Order unicyclic graphs according to spectral radius of unoriented laplacian matrix." Discussiones Mathematicae Graph Theory 28.3 (2008): 487-499. <http://eudml.org/doc/270719>.
@article{Yi2008,
abstract = {The spectral radius of a graph is defined by that of its unoriented Laplacian matrix. In this paper, we determine the unicyclic graphs respectively with the third and the fourth largest spectral radius among all unicyclic graphs of given order.},
author = {Yi-Zheng Fan, Song Wu},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {unicyclic graph; Laplacian matrix; spectral radius},
language = {eng},
number = {3},
pages = {487-499},
title = {Order unicyclic graphs according to spectral radius of unoriented laplacian matrix},
url = {http://eudml.org/doc/270719},
volume = {28},
year = {2008},
}
TY - JOUR
AU - Yi-Zheng Fan
AU - Song Wu
TI - Order unicyclic graphs according to spectral radius of unoriented laplacian matrix
JO - Discussiones Mathematicae Graph Theory
PY - 2008
VL - 28
IS - 3
SP - 487
EP - 499
AB - The spectral radius of a graph is defined by that of its unoriented Laplacian matrix. In this paper, we determine the unicyclic graphs respectively with the third and the fourth largest spectral radius among all unicyclic graphs of given order.
LA - eng
KW - unicyclic graph; Laplacian matrix; spectral radius
UR - http://eudml.org/doc/270719
ER -
References
top- [1] R.B. Bapat, J.W. Grossmana and D.M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear Multilinear Algebra 46 (1999) 299-312, doi: 10.1080/03081089908818623. Zbl0940.05042
- [2] D. Cvetković, P. Rowlinson and S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171, doi: 10.1016/j.laa.2007.01.009. Zbl1113.05061
- [3] Y.-Z. Fan, On spectral integral variations of mixed graph, Linear Algebra Appl. 374 (2003) 307-316, doi: 10.1016/S0024-3795(03)00575-5. Zbl1026.05076
- [4] Y.-Z. Fan, Largest eigenvalue of a unicyclic mixed graph, Appl. Math. J. Chinese Univ. (B) 19 (2004) 140-148, doi: 10.1007/s11766-004-0047-4. Zbl1059.05072
- [5] Y.-Z. Fan, On the least eigenvalue of a unicyclic mixed graph, Linear Multilinear Algebra 53 (2005) 97-113, doi: 10.1080/03081080410001681540. Zbl1062.05090
- [6] Y.-Z. Fan, H.-Y. Hong, S.-C. Gong and Y. Wang, Order unicyclic mixed graphs by spectral radius, Australasian J. Combin. 37 (2007) 305-316. Zbl1122.05059
- [7] Y.-Z. Fan, B.-S. Tam and J. Zhou, Maximizing spectral radius of unoriented Laplacian matrix over bicyclic graphs of a 798 given order, Linear and Multilinear Algebra (2007),, doi: 10.1080/03081080701306589.
- [8] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305.
- [9] J.W. Grossman, D.M. Kulkarni and I.E. Schochetman, Algebraic Graph Theory Without Orientation, Linear Algebra Appl. 212/213 (1994) 289-307, doi: 10.1016/0024-3795(94)90407-3. Zbl0817.05047
- [10] Y.-P. Hou, J.-S. Li and Y.-L. Pan, On the Laplacian eigenvalues of signed graphs, Linear Multilinear Algebra 51 (2003) 21-30, doi: 10.1080/0308108031000053611. Zbl1020.05044
- [11] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197/198 (1998) 143-176, doi: 10.1016/0024-3795(94)90486-3. Zbl0802.05053
- [12] B. Mohar, Some applications of Laplacian eigenvalues of graphs, in: Graph Symmetry (G. Hahn and G. Sabidussi Eds (Kluwer Academic Publishers, Dordrecht, 1997) 225-275. Zbl0883.05096
- [13] B.-S. Tam, Y.-Z. Fan and J. Zhou, Unoriented Laplacian maximizing graphs are degree maximal, Linear Algebra Appl. (2008), doi: 10.1016/j.laa.2008.04.002. Zbl1149.05034
- [14] X.-D. Zhang and J.-S. Li, The Laplacian spectrum of a mixed graph, Linear Algebra Appl. 353 (2002) 11-20, doi: 10.1016/S0024-3795(01)00538-9. Zbl1003.05073
- [15] X.-D. Zhang and Rong Luo, The Laplacian eigenvalues of mixed graphs, Linear Algebra Appl. 362 (2003) 109-119, doi: 10.1016/S0024-3795(02)00509-8. Zbl1017.05078
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.