Holomorph of generalized Bol loops II

Tèmítọ́pẹ́ Gbọ́láhàn Jaíyéiọlá; Bolaji Ajibola Popoola

Discussiones Mathematicae - General Algebra and Applications (2015)

  • Volume: 35, Issue: 1, page 59-78
  • ISSN: 1509-9415

Abstract

top
The notion of the holomorph of a generalized Bol loop (GBL) is characterized afresh. The holomorph of a right inverse property loop (RIPL) is shown to be a GBL if and only if the loop is a GBL and some bijections of the loop are right (middle) regular. The holomorph of a RIPL is shown to be a GBL if and only if the loop is a GBL and some elements of the loop are right (middle) nuclear. Necessary and sufficient conditions for the holomorph of a RIPL to be a Bol loop are deduced. Some algebraic properties and commutative diagrams are established for a RIPL whose holomorph is a GBL.

How to cite

top

Tèmítọ́pẹ́ Gbọ́láhàn Jaíyéiọlá, and Bolaji Ajibola Popoola. "Holomorph of generalized Bol loops II." Discussiones Mathematicae - General Algebra and Applications 35.1 (2015): 59-78. <http://eudml.org/doc/270737>.

@article{Tèmító2015,
abstract = {The notion of the holomorph of a generalized Bol loop (GBL) is characterized afresh. The holomorph of a right inverse property loop (RIPL) is shown to be a GBL if and only if the loop is a GBL and some bijections of the loop are right (middle) regular. The holomorph of a RIPL is shown to be a GBL if and only if the loop is a GBL and some elements of the loop are right (middle) nuclear. Necessary and sufficient conditions for the holomorph of a RIPL to be a Bol loop are deduced. Some algebraic properties and commutative diagrams are established for a RIPL whose holomorph is a GBL.},
author = {Tèmítọ́pẹ́ Gbọ́láhàn Jaíyéiọlá, Bolaji Ajibola Popoola},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {generalized Bol loop; holomorph of a loop},
language = {eng},
number = {1},
pages = {59-78},
title = {Holomorph of generalized Bol loops II},
url = {http://eudml.org/doc/270737},
volume = {35},
year = {2015},
}

TY - JOUR
AU - Tèmítọ́pẹ́ Gbọ́láhàn Jaíyéiọlá
AU - Bolaji Ajibola Popoola
TI - Holomorph of generalized Bol loops II
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2015
VL - 35
IS - 1
SP - 59
EP - 78
AB - The notion of the holomorph of a generalized Bol loop (GBL) is characterized afresh. The holomorph of a right inverse property loop (RIPL) is shown to be a GBL if and only if the loop is a GBL and some bijections of the loop are right (middle) regular. The holomorph of a RIPL is shown to be a GBL if and only if the loop is a GBL and some elements of the loop are right (middle) nuclear. Necessary and sufficient conditions for the holomorph of a RIPL to be a Bol loop are deduced. Some algebraic properties and commutative diagrams are established for a RIPL whose holomorph is a GBL.
LA - eng
KW - generalized Bol loop; holomorph of a loop
UR - http://eudml.org/doc/270737
ER -

References

top
  1. [1] J.O. Adeniran, The Study of Properties of Certain Class of Loops via their Bryant-Schneider Group (Ph.D. thesis, University of Agriculture, Abeokuta, 2002). 
  2. [2] J.O. Adeniran, On Generalised Bol loop Identity and Related Identities (M.Sc. thesis, Obafemi Awolowo University, Ile-Ife, 1997). 
  3. [3] J.O. Adeniran, On holomorphic theory of a class of left Bol loops, Scientific Annal of A.I.I Cuza Univ. 51 (2005) 23-28. Zbl1150.20318
  4. [4] J.O. Adeniran and S.A. Akinleye, On some loops satisfying the generalised Bol identity, Nig. Jour. Sc. 35 (2001) 101-107. 
  5. [5] J.O. Adeniran, T.G. Jaiyeola and K.A. Idowu, Holomorph of generalized Bol loops, Novi Sad Journal of Mathematics 44 (2014) 37-51. 
  6. [6] J.O. Adeniran and A.R.T. Solarin, A note on automorphic inverse property loops, Zbornik Radfova, Coll. of Sci. papers 20 (1997) 47-52. Zbl1249.20076
  7. [7] J.O. Adeniran and A.R.T. Solarin, A note on generalised Bol Identity, Scientific Annal of A.I.I Cuza Univ. 45 (1999) 19-26. 
  8. [8] N. Ajmal, A generalisation of Bol loops, Ann. Soc. Sci. Bruxelles Ser. 1 92 (1978) 241-248. 
  9. [9] V. Belousov, The Foundations of the Theory of Quasigroups and Loops (Moscow, Nauka (Russian), 1967). 
  10. [10] W. Blaschke and G. Bol, Geometric der Gewebe (Springer Verlags, 1938). Zbl0020.06701
  11. [11] G. Bol, Gewebe and Gruppen, Math. Ann. 144 (1937) 414-431. 
  12. [12] R.H. Bruck, Contributions to the theory of Loops, Trans. Amer. Soc. 55 (1944) 245-354. doi: 10.1090/s0002-9947-1946-0017288-3. Zbl0061.02201
  13. [13] R.H. Bruck, A survey of binary systems (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1971). doi: 10.1007/978-3-662-43119-1. Zbl0206.30301
  14. [14] R.H. Bruck and L.J. Paige, Loops whose inner mappings are automorphisms, The Annals of Mathematics 63 (1956) 308-323. doi: 10.2307/1969612. Zbl0074.01701
  15. [15] R.P. Burn, Finite Bol loops, Math. Proc. Camb. Phil. Soc. 84 (1978) 377-385. doi: 10.1017/s0305004100055213. Zbl0385.20043
  16. [16] R.P. Burn, Finite Bol loops II, Math. Proc. Camb. Phil. Soc. 88 (1981) 445-455. doi: 10.1017/s0305004100058357. Zbl0462.20056
  17. [17] R.P. Burn, Finite Bol loops III, Math. Proc. Camb. Phil. Soc. 97 (1985) 219-223. doi: 10.1017/s0305004100062770. Zbl0562.20036
  18. [18] B.F. Bryant and H. Schneider, Principal loop-isotopes of quasigroups, Canad. J. Math. 18 (1966) 120-125. doi: 10.4153/cjm-1966-016-8. Zbl0132.26405
  19. [19] O. Chein and E.G. Goodaire, Bol loops with a large left nucleus, Comment. Math. Univ. Carolin. 49 (2008) 171-196. Zbl1192.20051
  20. [20] O. Chein and E.G. Goodaire, Bol loops of nilpotence class two, Canad. J. Math. 59 296-310. doi: 10.4153/cjm-2007-012-7. Zbl1123.20060
  21. [21] O. Chein and E.G. Goodaire, A new construction of Bol loops: the 'odd' case, Quasigroups and Related Systems 13 (2005) 87-98. Zbl1113.20054
  22. [22] V.O. Chiboka, The Bryant-Schneider group of an extra loop, Collection of Scientific papers of the Faculty of Science, Kragujevac 18 (1996) 9-20. Zbl0887.20035
  23. [23] V.O. Chiboka and A.R.T. Solarin, Holomorphs of conjugacy closed loops, Scientific Annals of Al.I. Cuza. Univ. 37 (1991) 277-284. Zbl0799.20066
  24. [24] T. Foguel, M.K. Kinyon and J.D. Phillips, On twisted subgroups and Bol loops of odd order, Rocky Mountain J. Math. 36 (2006) 183-212. doi: 10.1216/rmjm/1181069494. Zbl1136.20053
  25. [25] E.D. Huthnance Jr., A theory of generalised Moufang loops (Ph.D. thesis, Georgia Institute of Technology, 1968). 
  26. [26] T.G. Jaiyeola, A study of new concepts in smarandache quasigroups and loops (ProQuest Information and Learning(ILQ), Ann Arbor, USA, 2009). Zbl1159.20035
  27. [27] M.K. Kinyon and J.D. Phillips, Commutants of Bol loops of odd order, Proc. Amer. Math. Soc. 132 (2004) 617-619. Zbl1044.20041
  28. [28] M.K. Kinyon, J.D. Phillips and P. Vojtěchovský, When is the commutant of a Bol loop a subloop?, Trans. Amer. Math. Soc. 360 (2008) 2393-2408. doi: 10.1090/s0002-9947-07-04391-7. Zbl1134.20069
  29. [29] R. Moufang, Zur Struktur von Alterntivkorpern, Math. Ann. 110 (1935) 416-430. 
  30. [30] G.P. Nagy, A class of finite simple Bol loops of exponent 2, Trans. Amer. Math. Soc. 361 (2009) 5331-5343. doi: 10.1090/s0002-9947-09-04646-7. Zbl1179.20061
  31. [31] G.P. Nagy, A class of simple proper Bol loop, Manuscripta Mathematica 127 (2008) 81-88. doi: 10.1007/s00229-008-0188-5. Zbl1167.20038
  32. [32] G.P. Nagy, Some remarks on simple Bol loops, Comment. Math. Univ. Carolin. 49 (2008) 259-270. Zbl1192.20056
  33. [33] D.A. Robinson, Bol loops (Ph.D thesis, University of Wisconsin, Madison, 1964). Zbl0163.02001
  34. [34] D.A. Robinson, Holomorphic theory of extra loops, Publ. Math. Debrecen 18 (1971) 59-64. Zbl0251.20073
  35. [35] D.A. Robinson, The Bryant-Schneider group of a loop, Extract Des Ann. De la Sociiét é Sci. De Brucellaes 94 (1980) 69-81. Zbl0448.20060
  36. [36] B.L. Sharma, Left loops which Satisfy the left Bol identity, Proc. Amer. Math. Soc 61 (1976) 189-195. doi: 10.1090/s0002-9939-1976-0422480-4. Zbl0352.20055
  37. [37] B.L. Sharma, Left Loops which satisfy the left Bol identity (II), Ann. Soc. Sci. Bruxelles, Sér. I 91 (1977) 69-78. Zbl0385.20044
  38. [38] B.L. Sharma and L.V. Sabinin L.V., On the Algebraic properties of half Bol Loops, Ann. Soc. Sci. Bruxelles Sér. I 93 (1979) 227-240. Zbl0435.20051
  39. [39] B.L. Sharma and L.V. Sabinin, On the existence of Half Bol loops, Scientific Annal of A.I.I Cuza Univ. 22 (1976) 147-148. 
  40. [40] A.R.T. Solarin and B.L. Sharma, On the Construction of Bol loops, Scientific Annal of A.I.I Cuza Univ. 27 (1981) 13-17. 
  41. [41] A.R.T. Solarin and B.L. Sharma, Some examples of Bol loops, Acta Carol, Math. and Phys. 25 (1984) 59-68. Zbl0545.20060
  42. [42] A.R.T. Solarin and B.L. Sharma, On the Construction of Bol loops II, Scientific Annal of A.I.I Cuza Univ. 30 (1984) 7-14. 
  43. [43] A.R.T. Solarin, Characterization of Bol loops of small orders (Ph.D. Dissertation, Universiy of Ife, 1986). Zbl0604.20067
  44. [44] A.R.T. Solarin, On the Identities of Bol Moufang Type, Kyungpook Math. 28 (1988) 51-62. Zbl0674.20043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.