# Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in ${\mathbb{R}}^{d}$

Annales Polonici Mathematici (1998)

- Volume: 68, Issue: 2, page 125-157
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topPiotr Bugiel. "Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in $ℝ^d$." Annales Polonici Mathematici 68.2 (1998): 125-157. <http://eudml.org/doc/270740>.

@article{PiotrBugiel1998,

abstract = {Asymptotic properties of the sequences
(a) $\{P^j_φ g\}_\{j=1\}^\{∞\}$ and
(b) $\{j^\{-1\} ∑_\{i=0\}^\{j-1\} Pⁱ_φ g\}_\{j=1\}^\{∞\}$,
where $P_φ:L¹ → L¹$ is the Frobenius-Perron operator associated with a nonsingular Markov map defined on a σ-finite measure space, are studied for g ∈ G = f ∈ L¹: f ≥ 0 and ⃦f ⃦ = 1. An operator-theoretic analogue of Rényi’s Condition is introduced. It is proved that under some additional assumptions this condition implies the L¹-convergence of the sequences (a) and (b) to a unique g₀ ∈ G. The general result is applied to some smooth Markov maps in $ℝ^d$. Also the Bernoulli property is proved for a class of smooth Markov maps in $ℝ^d$.},

author = {Piotr Bugiel},

journal = {Annales Polonici Mathematici},

keywords = {invariant measure; Frobenius-Perron operator; expanding map; distortion inequality; Perron-Frobenius operator; Markov maps; Rényi condition; ergodic averages; recurrence; Bernoullicity},

language = {eng},

number = {2},

pages = {125-157},

title = {Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in $ℝ^d$},

url = {http://eudml.org/doc/270740},

volume = {68},

year = {1998},

}

TY - JOUR

AU - Piotr Bugiel

TI - Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in $ℝ^d$

JO - Annales Polonici Mathematici

PY - 1998

VL - 68

IS - 2

SP - 125

EP - 157

AB - Asymptotic properties of the sequences
(a) ${P^j_φ g}_{j=1}^{∞}$ and
(b) ${j^{-1} ∑_{i=0}^{j-1} Pⁱ_φ g}_{j=1}^{∞}$,
where $P_φ:L¹ → L¹$ is the Frobenius-Perron operator associated with a nonsingular Markov map defined on a σ-finite measure space, are studied for g ∈ G = f ∈ L¹: f ≥ 0 and ⃦f ⃦ = 1. An operator-theoretic analogue of Rényi’s Condition is introduced. It is proved that under some additional assumptions this condition implies the L¹-convergence of the sequences (a) and (b) to a unique g₀ ∈ G. The general result is applied to some smooth Markov maps in $ℝ^d$. Also the Bernoulli property is proved for a class of smooth Markov maps in $ℝ^d$.

LA - eng

KW - invariant measure; Frobenius-Perron operator; expanding map; distortion inequality; Perron-Frobenius operator; Markov maps; Rényi condition; ergodic averages; recurrence; Bernoullicity

UR - http://eudml.org/doc/270740

ER -

## References

top- [A75] R. L. Adler, Continued fractions and Bernoulli trials, Lecture notes, Ergodic Theory, J. Moser, E. Phillips, and S. Varadhan (eds.), Courant Inst. Math. Sci., New York, 1975.
- [A79] R. L. Adler, Afterword (to [Bow79]), Comm. Math. Phys. 69 (1979), 15-17.
- [A91] R. L. Adler, Geodesic flows, interval maps, and symbolic dynamics, in: Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, T. Bedford, M. Keane and C. Series (eds.), Oxford Univ. Press, Oxford, 1991, 93-123. Zbl0752.58007
- [ADU93] J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. Zbl0789.28010
- [AF91] R. L. Adler and L. Flatto, Geodesic flows, interval maps, and symbolic dynamics, Bull. Amer. Math. Soc. 25 (1991), 229-334. Zbl0802.58037
- [Bow79] R. Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phys. 69 (1979), 1-14.
- [BowS79] R. Bowen and C. Series, Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 401-418.
- [Br94] H. Bruin, Topological conditions for the existence of invariant measures for unimodal maps, Ergodic Theory Dynam. Systems 14 (1994), 433-451. Zbl0812.58052
- [Br94a] H. Bruin, Invariant measures of interval maps, Thesis, Technische Universiteit Delft 1994.
- [Bu81] P. Bugiel, Notes on invariant measures for Markov maps of the interval, preprint, Jagiellonian University, 1981.
- [Bu82] P. Bugiel, Approximation for the measures of ergodic transformations of the real line, Z. Wahrsch. Verw. Gebiete 59 (1982), 27-38. Zbl0476.28010
- [Bu82a] P. Bugiel, Ergodic properties of maps of Markov type (in ℝ¹), Thesis, Jagiellonian University, Kraków, 1982.
- [Bu85] P. Bugiel, A note on invariant measures for Markov maps of an interval, Z. Wahrsch. Verw. Gebiete 70 (1985), 345-349. Zbl0606.28013
- [Bu85a] P. Bugiel, On a class of piecewise monotonic transformations admitting smooth invariant measures, Prace Inf. Z.1, Zesz. Nauk. UJ, 726 (1985), 49-60.
- [Bu86] P. Bugiel, On the number of all absolutely continuous, ergodic measures of Markov type transformations defined on an interval, Math. Nachr. 129 (1986), 261-268. Zbl0622.28014
- [Bu87] P. Bugiel, Correction and addendum to 'A note on invariant measures for Markov maps of an interval.' Z. Wahrsch. Verw. Gebiete 70, 345-349 (1985), Probab. Theory Related Fields 76 (1987), 255-256. Zbl0606.28013
- [Bu91] P. Bugiel, On the convergence of iterates of the Frobenius-Perron operator associated with a Markov map defined on an interval. The lower-function approach, Ann. Polon. Math. 53 (1991), 131-137. Zbl0731.47031
- [Bu91a] P. Bugiel, Ergodic properties of Markov maps in ${\mathbb{R}}^{d}$, Probab. Theory Related Fields 88 (1991), 483-496. Zbl0723.60089
- [Bu92] P. Bugiel, Invariant measures of C²-diffeomorphisms of Markov type in ${\mathbb{R}}^{d}$, Monatsh. Math. 113 (1992), 255-263. Zbl0765.58014
- [Bu93] P. Bugiel, On a Bernoulli property of some piecewise C²-diffeomorphisms in ${\mathbb{R}}^{d}$, Monatsh. Math. 116 (1993), 99-110. Zbl0792.58024
- [Bu96] P. Bugiel, Application of the Ulam’s procedure for approximating invariant measures to the case of ${C}^{1+\alpha}$-smooth Markov maps in ${\mathbb{R}}^{d}$, Univ. Iagell. Acta Math. 34 (1997), 7-27. Zbl0947.37011
- [DS63] N. Dunford and J. T. Schwartz, Linear Operators, Part I, General Theory, Wiley, New York, 1963.
- [FO70] N. Friedman and D. Ornstein, On isomorphism of weak Bernoulli transformations, Adv. Math. 5 (1970), 365-394. Zbl0203.05801
- [G69] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Transl. Math. Monographs 26, Amer. Math. Soc., 1969.
- [H77] M. Halfant, Analytic properties of Rényi's invariant density, Israel J. Math. 27 (1977), 1-20. Zbl0363.28013
- [IMT71] S. Ito, H. Murata and H. Totoki, Remarks on the isomorphism theorems for weak Bernoulli transformations in general case, Publ. Res. Inst. Math. Sci. 7 (1971/72), 541-580. Zbl0246.28012
- [IR78] I. A. Ibragimov and Ya. A. Rozanov, Gaussian Random Processes, Springer, Berlin, 1978.
- [I87] M. Iosifescu, Mixing properties for f-expansions, in: Probab. Theory and Math. Statist., Vol. II, Yu. V. Prohorov et al. (eds.), VNU Science Press, 1987, 1-8.
- [IG91] M. Iosifescu and S. Grigorescu, Dependence with Complete Connections and its Applications, Cambridge Tracts in Math. 96, Cambridge Univ. Press, Cambridge, 1990.
- [JGB94] M. Jabłoński, P. Góra and A. Boyarsky, A general existence theorem for absolutely continuous invariant measures on bounded and unbounded intervals, preprint, 1994, to appear. Zbl0895.28005
- [K90] G. Keller, Exponents, attractors and Hopf decompositions for interval maps, Ergodic Theory Dynam. Systems 10 (1990), 717-744. Zbl0715.58020
- [LY82] A. Lasota and J. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982), 375-384. Zbl0524.28021
- [Li71] M. Lin, Mixing for Markov operators, Z. Wahrsch. Verw. Gebiete 16 (1971), 231-242. Zbl0212.49301
- [M71] G. Maruyama, Some aspects of Ornstein's theory of isomorphism problems in ergodic theory, Publ. Res. Inst. Math. Sci. 7 (1971/72), 511-539.
- [Ma87] R. Ma né, Ergodic Theory and Differentiable Dynamics, Ergeb. Math. Kuznzgeb. 8, Springer, Berlin, 1987.
- [MS93] W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. 25, Springer, Berlin, 1993.
- [P80] G. Pianigiani, First return map and invariant measures, Israel J. Math. 35 (1980), 32-47. Zbl0445.28016
- [R56] O. Rechard, Invariant measures for many-one transformations, Duke Math. J. 23 (1956), 477-488. Zbl0070.28001
- [Re57] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493. Zbl0079.08901
- [Ro61] V. A. Rokhlin, Exact endomorphisms of Lebesgue spaces, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 490-530 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 39 (1964), 1-36.
- [Ry83] M. R. Rychlik, Bounded variation and invariant measures, Studia Math. 76 (1983), 69-80. Zbl0575.28011
- [Sch89] F. Schweiger, Ergodic theory of fibred systems, Institut für Mathematik der Universität Salzburg, Salzburg, 1989.
- [Se79] C. Series, Additional comments (to [Bow79]), Comm. Math. Phys. 69 (1979), 17.
- [Sz84] W. Szlenk, An Introduction to the Theory of Smooth Dynamical Systems, PWN, Warszawa, 1984.
- [U60] S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Appl. Math., Interscience, New York, 1960.