Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in d

Piotr Bugiel

Annales Polonici Mathematici (1998)

  • Volume: 68, Issue: 2, page 125-157
  • ISSN: 0066-2216

Abstract

top
Asymptotic properties of the sequences (a) P φ j g j = 1 and (b) j - 1 i = 0 j - 1 P φ g j = 1 , where P φ : L ¹ L ¹ is the Frobenius-Perron operator associated with a nonsingular Markov map defined on a σ-finite measure space, are studied for g ∈ G = f ∈ L¹: f ≥ 0 and ⃦f ⃦ = 1. An operator-theoretic analogue of Rényi’s Condition is introduced. It is proved that under some additional assumptions this condition implies the L¹-convergence of the sequences (a) and (b) to a unique g₀ ∈ G. The general result is applied to some smooth Markov maps in d . Also the Bernoulli property is proved for a class of smooth Markov maps in d .

How to cite

top

Piotr Bugiel. "Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in $ℝ^d$." Annales Polonici Mathematici 68.2 (1998): 125-157. <http://eudml.org/doc/270740>.

@article{PiotrBugiel1998,
abstract = {Asymptotic properties of the sequences (a) $\{P^j_φ g\}_\{j=1\}^\{∞\}$ and (b) $\{j^\{-1\} ∑_\{i=0\}^\{j-1\} Pⁱ_φ g\}_\{j=1\}^\{∞\}$, where $P_φ:L¹ → L¹$ is the Frobenius-Perron operator associated with a nonsingular Markov map defined on a σ-finite measure space, are studied for g ∈ G = f ∈ L¹: f ≥ 0 and ⃦f ⃦ = 1. An operator-theoretic analogue of Rényi’s Condition is introduced. It is proved that under some additional assumptions this condition implies the L¹-convergence of the sequences (a) and (b) to a unique g₀ ∈ G. The general result is applied to some smooth Markov maps in $ℝ^d$. Also the Bernoulli property is proved for a class of smooth Markov maps in $ℝ^d$.},
author = {Piotr Bugiel},
journal = {Annales Polonici Mathematici},
keywords = {invariant measure; Frobenius-Perron operator; expanding map; distortion inequality; Perron-Frobenius operator; Markov maps; Rényi condition; ergodic averages; recurrence; Bernoullicity},
language = {eng},
number = {2},
pages = {125-157},
title = {Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in $ℝ^d$},
url = {http://eudml.org/doc/270740},
volume = {68},
year = {1998},
}

TY - JOUR
AU - Piotr Bugiel
TI - Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in $ℝ^d$
JO - Annales Polonici Mathematici
PY - 1998
VL - 68
IS - 2
SP - 125
EP - 157
AB - Asymptotic properties of the sequences (a) ${P^j_φ g}_{j=1}^{∞}$ and (b) ${j^{-1} ∑_{i=0}^{j-1} Pⁱ_φ g}_{j=1}^{∞}$, where $P_φ:L¹ → L¹$ is the Frobenius-Perron operator associated with a nonsingular Markov map defined on a σ-finite measure space, are studied for g ∈ G = f ∈ L¹: f ≥ 0 and ⃦f ⃦ = 1. An operator-theoretic analogue of Rényi’s Condition is introduced. It is proved that under some additional assumptions this condition implies the L¹-convergence of the sequences (a) and (b) to a unique g₀ ∈ G. The general result is applied to some smooth Markov maps in $ℝ^d$. Also the Bernoulli property is proved for a class of smooth Markov maps in $ℝ^d$.
LA - eng
KW - invariant measure; Frobenius-Perron operator; expanding map; distortion inequality; Perron-Frobenius operator; Markov maps; Rényi condition; ergodic averages; recurrence; Bernoullicity
UR - http://eudml.org/doc/270740
ER -

References

top
  1. [A75] R. L. Adler, Continued fractions and Bernoulli trials, Lecture notes, Ergodic Theory, J. Moser, E. Phillips, and S. Varadhan (eds.), Courant Inst. Math. Sci., New York, 1975. 
  2. [A79] R. L. Adler, Afterword (to [Bow79]), Comm. Math. Phys. 69 (1979), 15-17. 
  3. [A91] R. L. Adler, Geodesic flows, interval maps, and symbolic dynamics, in: Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, T. Bedford, M. Keane and C. Series (eds.), Oxford Univ. Press, Oxford, 1991, 93-123. Zbl0752.58007
  4. [ADU93] J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. Zbl0789.28010
  5. [AF91] R. L. Adler and L. Flatto, Geodesic flows, interval maps, and symbolic dynamics, Bull. Amer. Math. Soc. 25 (1991), 229-334. Zbl0802.58037
  6. [Bow79] R. Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phys. 69 (1979), 1-14. 
  7. [BowS79] R. Bowen and C. Series, Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 401-418. 
  8. [Br94] H. Bruin, Topological conditions for the existence of invariant measures for unimodal maps, Ergodic Theory Dynam. Systems 14 (1994), 433-451. Zbl0812.58052
  9. [Br94a] H. Bruin, Invariant measures of interval maps, Thesis, Technische Universiteit Delft 1994. 
  10. [Bu81] P. Bugiel, Notes on invariant measures for Markov maps of the interval, preprint, Jagiellonian University, 1981. 
  11. [Bu82] P. Bugiel, Approximation for the measures of ergodic transformations of the real line, Z. Wahrsch. Verw. Gebiete 59 (1982), 27-38. Zbl0476.28010
  12. [Bu82a] P. Bugiel, Ergodic properties of maps of Markov type (in ℝ¹), Thesis, Jagiellonian University, Kraków, 1982. 
  13. [Bu85] P. Bugiel, A note on invariant measures for Markov maps of an interval, Z. Wahrsch. Verw. Gebiete 70 (1985), 345-349. Zbl0606.28013
  14. [Bu85a] P. Bugiel, On a class of piecewise monotonic transformations admitting smooth invariant measures, Prace Inf. Z.1, Zesz. Nauk. UJ, 726 (1985), 49-60. 
  15. [Bu86] P. Bugiel, On the number of all absolutely continuous, ergodic measures of Markov type transformations defined on an interval, Math. Nachr. 129 (1986), 261-268. Zbl0622.28014
  16. [Bu87] P. Bugiel, Correction and addendum to 'A note on invariant measures for Markov maps of an interval.' Z. Wahrsch. Verw. Gebiete 70, 345-349 (1985), Probab. Theory Related Fields 76 (1987), 255-256. Zbl0606.28013
  17. [Bu91] P. Bugiel, On the convergence of iterates of the Frobenius-Perron operator associated with a Markov map defined on an interval. The lower-function approach, Ann. Polon. Math. 53 (1991), 131-137. Zbl0731.47031
  18. [Bu91a] P. Bugiel, Ergodic properties of Markov maps in d , Probab. Theory Related Fields 88 (1991), 483-496. Zbl0723.60089
  19. [Bu92] P. Bugiel, Invariant measures of C²-diffeomorphisms of Markov type in d , Monatsh. Math. 113 (1992), 255-263. Zbl0765.58014
  20. [Bu93] P. Bugiel, On a Bernoulli property of some piecewise C²-diffeomorphisms in d , Monatsh. Math. 116 (1993), 99-110. Zbl0792.58024
  21. [Bu96] P. Bugiel, Application of the Ulam’s procedure for approximating invariant measures to the case of C 1 + α -smooth Markov maps in d , Univ. Iagell. Acta Math. 34 (1997), 7-27. Zbl0947.37011
  22. [DS63] N. Dunford and J. T. Schwartz, Linear Operators, Part I, General Theory, Wiley, New York, 1963. 
  23. [FO70] N. Friedman and D. Ornstein, On isomorphism of weak Bernoulli transformations, Adv. Math. 5 (1970), 365-394. Zbl0203.05801
  24. [G69] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Transl. Math. Monographs 26, Amer. Math. Soc., 1969. 
  25. [H77] M. Halfant, Analytic properties of Rényi's invariant density, Israel J. Math. 27 (1977), 1-20. Zbl0363.28013
  26. [IMT71] S. Ito, H. Murata and H. Totoki, Remarks on the isomorphism theorems for weak Bernoulli transformations in general case, Publ. Res. Inst. Math. Sci. 7 (1971/72), 541-580. Zbl0246.28012
  27. [IR78] I. A. Ibragimov and Ya. A. Rozanov, Gaussian Random Processes, Springer, Berlin, 1978. 
  28. [I87] M. Iosifescu, Mixing properties for f-expansions, in: Probab. Theory and Math. Statist., Vol. II, Yu. V. Prohorov et al. (eds.), VNU Science Press, 1987, 1-8. 
  29. [IG91] M. Iosifescu and S. Grigorescu, Dependence with Complete Connections and its Applications, Cambridge Tracts in Math. 96, Cambridge Univ. Press, Cambridge, 1990. 
  30. [JGB94] M. Jabłoński, P. Góra and A. Boyarsky, A general existence theorem for absolutely continuous invariant measures on bounded and unbounded intervals, preprint, 1994, to appear. Zbl0895.28005
  31. [K90] G. Keller, Exponents, attractors and Hopf decompositions for interval maps, Ergodic Theory Dynam. Systems 10 (1990), 717-744. Zbl0715.58020
  32. [LY82] A. Lasota and J. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982), 375-384. Zbl0524.28021
  33. [Li71] M. Lin, Mixing for Markov operators, Z. Wahrsch. Verw. Gebiete 16 (1971), 231-242. Zbl0212.49301
  34. [M71] G. Maruyama, Some aspects of Ornstein's theory of isomorphism problems in ergodic theory, Publ. Res. Inst. Math. Sci. 7 (1971/72), 511-539. 
  35. [Ma87] R. Ma né, Ergodic Theory and Differentiable Dynamics, Ergeb. Math. Kuznzgeb. 8, Springer, Berlin, 1987. 
  36. [MS93] W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. 25, Springer, Berlin, 1993. 
  37. [P80] G. Pianigiani, First return map and invariant measures, Israel J. Math. 35 (1980), 32-47. Zbl0445.28016
  38. [R56] O. Rechard, Invariant measures for many-one transformations, Duke Math. J. 23 (1956), 477-488. Zbl0070.28001
  39. [Re57] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493. Zbl0079.08901
  40. [Ro61] V. A. Rokhlin, Exact endomorphisms of Lebesgue spaces, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 490-530 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 39 (1964), 1-36. 
  41. [Ry83] M. R. Rychlik, Bounded variation and invariant measures, Studia Math. 76 (1983), 69-80. Zbl0575.28011
  42. [Sch89] F. Schweiger, Ergodic theory of fibred systems, Institut für Mathematik der Universität Salzburg, Salzburg, 1989. 
  43. [Se79] C. Series, Additional comments (to [Bow79]), Comm. Math. Phys. 69 (1979), 17. 
  44. [Sz84] W. Szlenk, An Introduction to the Theory of Smooth Dynamical Systems, PWN, Warszawa, 1984. 
  45. [U60] S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Appl. Math., Interscience, New York, 1960. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.