On a special case of Hadwiger's conjecture
Michael D. Plummer; Michael Stiebitz; Bjarne Toft
Discussiones Mathematicae Graph Theory (2003)
- Volume: 23, Issue: 2, page 333-363
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topMichael D. Plummer, Michael Stiebitz, and Bjarne Toft. "On a special case of Hadwiger's conjecture." Discussiones Mathematicae Graph Theory 23.2 (2003): 333-363. <http://eudml.org/doc/270755>.
@article{MichaelD2003,
abstract = {Hadwiger's Conjecture seems difficult to attack, even in the very special case of graphs G of independence number α(G) = 2. We present some results in this special case.},
author = {Michael D. Plummer, Michael Stiebitz, Bjarne Toft},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {Hadwiger's Conjecture; complete minor; independence number; connected matching; Hadwiger's conjecture; -critical graph},
language = {eng},
number = {2},
pages = {333-363},
title = {On a special case of Hadwiger's conjecture},
url = {http://eudml.org/doc/270755},
volume = {23},
year = {2003},
}
TY - JOUR
AU - Michael D. Plummer
AU - Michael Stiebitz
AU - Bjarne Toft
TI - On a special case of Hadwiger's conjecture
JO - Discussiones Mathematicae Graph Theory
PY - 2003
VL - 23
IS - 2
SP - 333
EP - 363
AB - Hadwiger's Conjecture seems difficult to attack, even in the very special case of graphs G of independence number α(G) = 2. We present some results in this special case.
LA - eng
KW - Hadwiger's Conjecture; complete minor; independence number; connected matching; Hadwiger's conjecture; -critical graph
UR - http://eudml.org/doc/270755
ER -
References
top- [1] C. Berge, Alternating chain methods: a survey, in: Graph Theory and Computing, ed., R. Read (Academic Press, New York, 1972) 1-13. Zbl0245.05115
- [2] S. Brandt, On the structure of dense triangle-free graphs, Combin. Prob. Comput. 8 (1999) 237-245, doi: 10.1017/S0963548399003831. Zbl0942.05032
- [3] S. Brandt and T. Pisanski, Another infinite sequence of dense triangle-free graphs, Elect. J. Combin. 5 (1998) #R43 1-5. Zbl0898.05067
- [4] P.A. Catlin, Hajós' graph-coloring conjecture: variations and counterexamples, J. Combin. Theory (B) 26 (1979) 268-274, doi: 10.1016/0095-8956(79)90062-5. Zbl0385.05033
- [5] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69. Zbl0047.17001
- [6] G.A. Dirac, Trennende Knotenpunktmengen und Reduzibilität abstrakter Graphen mit Anwendung auf das Vierfarbenproblem, J. Reine Angew. Math. 204 (1960) 116-131, doi: 10.1515/crll.1960.204.116.
- [7] P. Duchet and H. Meyniel, On Hadwiger's number and the stability number, Ann. Discrete Math. 13 (1982), 71-74. Zbl0522.05060
- [8] T. Gallai, Kritische Graphen II, Publ. Math. Inst. Hung. Acad. 8 (1963) 373-395.
- [9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman and Company, San Francisco, 1979). Zbl0411.68039
- [10] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahrsschrift der Naturf. Gesellschaft in Zürich 88 (1943) 133-142. Zbl0061.41308
- [11] J.H. Kim, The Ramsey number R(3,t) has order of magnitude t²/log t, Random Struct. Algorithms 7 (1995) 173-207, doi: 10.1002/rsa.3240070302. Zbl0832.05084
- [12] U. Krusenstjerna-Hafstrø m and B. Toft, Some remarks on Hadwiger's Conjecture and its relation to a conjecture of Lovász, in: The Theory and Applications of Graphs: Proceedings of the Fourth International Graph Theory Conference, Kalamazoo, 1980, eds., G. Chartrand, Y. Alavi, D.L. Goldsmith, L. Leśniak-Foster and D.R. Lick (John Wiley and Sons, 1981) 449-459.
- [13] L. Lovász and M.D. Plummer, Matching Theory, Akadémiai Kiadó, Budapest and Ann. Discrete Math. 29 (North-Holland, Amsterdam, 1986) 448.
- [14] W. Mader, Über trennende Eckenmengen in homomorphiekritischen Graphen, Math. Ann. 175 (1968) 243-252, doi: 10.1007/BF02052726. Zbl0171.22406
- [15] J. Pach, Graphs whose every independent set has a common neighbor, Discrete Math. 37 (1981) 217-228, doi: 10.1016/0012-365X(81)90221-1. Zbl0473.05054
- [16] N. Robertson, P.D. Seymour and R. Thomas, Hadwiger's conjecture for K₆-free graphs, Combinatorica 13 (1993) 279-362, doi: 10.1007/BF01202354. Zbl0830.05028
- [17] B. Toft, On separating sets of edges in contraction-critical graphs, Math. Ann. 196 (1972) 129-147, doi: 10.1007/BF01419610. Zbl0219.05059
- [18] B. Toft, A survey of Hadwiger's Conjecture, Congr. Numer. 115 (1996) 249-283. Zbl0895.05025
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.