Long cycles and neighborhood union in 1-tough graphs with large degree sums

Vu Dinh Hoa

Discussiones Mathematicae Graph Theory (1998)

  • Volume: 18, Issue: 1, page 5-13
  • ISSN: 2083-5892

How to cite

top

Vu Dinh Hoa. "Long cycles and neighborhood union in 1-tough graphs with large degree sums." Discussiones Mathematicae Graph Theory 18.1 (1998): 5-13. <http://eudml.org/doc/270759>.

@article{VuDinhHoa1998,
abstract = {},
author = {Vu Dinh Hoa},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {graphs; neighborhood; toughness; cycles; long cycle; hamiltonicity},
language = {eng},
number = {1},
pages = {5-13},
title = {Long cycles and neighborhood union in 1-tough graphs with large degree sums},
url = {http://eudml.org/doc/270759},
volume = {18},
year = {1998},
}

TY - JOUR
AU - Vu Dinh Hoa
TI - Long cycles and neighborhood union in 1-tough graphs with large degree sums
JO - Discussiones Mathematicae Graph Theory
PY - 1998
VL - 18
IS - 1
SP - 5
EP - 13
AB -
LA - eng
KW - graphs; neighborhood; toughness; cycles; long cycle; hamiltonicity
UR - http://eudml.org/doc/270759
ER -

References

top
  1. [1] A. Bigalke and H.A. Jung, Über Hamiltonsche Kreise und unabhängige Ecken in Graphen, Monatsh. Mathematics 88 (1979) 195-210, doi: 10.1007/BF01295234. Zbl0396.05033
  2. [2] B. Faß, A sufficient condition on degree sums of independent triples for hamiltonian cycles in 1-tough graphs, Ars Combinatoria 33 (1992) 300-304. Zbl0764.05050
  3. [3] D. Bauer, A. Morgana, E. Schmeichel and H.J. Veldman, Long cycles in graphs with large degree sums, Discrete Mathematics 79 (1989/90) 59-70, doi: 10.1016/0012-365X(90)90055-M. Zbl0713.05041
  4. [4] D. Bauer, H.J. Broersma and H.J. Veldman, Around three lemmas in hamiltonian graph theory, in: R. Bodendiek and R. Henn, eds., Topics in Combinatorics and Graph Theory. Festschrift in honour of Gerhard Ringel, Physica-Verlag, Heidelberg (1990) 101-110. Zbl0736.05054
  5. [5] D. Bauer, G. Fan and H.J. Veldman, Hamiltonian properties of graphs with large neighborhood unions, Discrete Mathematics 96 (1991) 33-49, doi: 10.1016/0012-365X(91)90468-H. Zbl0741.05039
  6. [6] E. Flandrin, H.A. Jung and H. Li, Hamiltonism, degree sum and neighborhood intersections, Discrete Mathematics 90 (1991) 41-52, doi: 10.1016/0012-365X(91)90094-I. Zbl0746.05038
  7. [7] H.J. Broersma, J. Van den Heuvel and H.J. Veldman, Long Cycles, Degree sums and Neighborhood Unions, Discrete Mathematics 121 (1993) 25-35, doi: 10.1016/0012-365X(93)90534-Z. Zbl0791.05063
  8. [8] J. Van den Heuvel, Degree and Toughness Condition for Cycles in Graphs, Thesis (1994) University of Twente, Enschede Niederland. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.